Results matching “Seattle”

2018 Nissan LEAF Test Drive

At the National Drive Electric Week event in Seattle, Cathy and I saw the newly-announced but not yet available 2018 Nissan LEAF. At that event, we signed up for a test drive.

ndew-seattle.jpgToday, October 23, 2017, Jose pulled up in front of our house in a beautiful blue Nissan LEAF for our test drive. We spent about an hour going over the vehicle and then out for a drive. Jose was enthusiastic and very knowledgeable about the car. We have a 2011 LEAF, so I'm familiar with that but haven't driven any of the newer LEAFs, so that's my perspective.

blue-2018-leaf.jpgBack Seat

The LEAF claims to be a 5-passenger vehicle, but the middle back seat has no head rest, so no neck protection in a rear-end collision. We often have 5 adults in the car, so that matters to us. I've been especially aware of this since we were rear-ended this summer. Fortunately, it was just the two of us in the car at the time, and neither of us were injured. My head hit the head rest pretty hard, so I'm glad it was there. I can't understand why Nissan doesn't protect the middle seat passenger.

back-seat.jpgCharge Cord

The SV and SL packages include a dual Level 1 (120V)/Level 2 (240V) charge cord. The standard 120V plug comes off to reveal a NEMA 14-50 240V plug.

charge-cord.jpgWith so much public charging available now, there's not much need for Level 2 charging away from home, but the dual mode cord means an owner can upgrade their home charging to 240V by just installing a NEMA 15-40 outlet.

Quiet Ride

When we started the test drive, right away I noticed how quiet it is. I'm told it has the same pedestrian warning sound as the 2011 model, but I couldn't hear it or the inverter whine which are pretty apparent in the 2011. I used to think our LEAF was quiet, but the 2018 is amazingly quiet. There was just the barest hint of a sound at low speeds in the driveway, maybe the pedestrian warning or the electronics, but much quieter. Likewise for road noise at freeway speeds, much quieter than our old LEAF.

One Pedal Driving

One of the best things about the electric driving experience is one pedal driving. It's so natural: push the accelerator pedal to go faster, let up to go slower. With regenerative braking, an EV can be much smoother and natural than a gas car, can slow down on a steep hill without using the brakes, and cruise control can hold you at a steady speed up and down hills. Automakers seem to be afraid of taking full advantage of this feature for fear it will be unfamiliar to gas car drivers, but Nissan has fully embraced it in the new LEAF. In the 2018, I was able to bring the car to a full stop on the steepest part of our driveway. Amazing! At the bottom of our drive, I brought it to a full stop, nudged it forward to look around our mailbox for traffic, then eased onto the road, all using just the accelerator pedal.

Nissan calls this feature ePedal. It can be turned on and off, and can be set to on or off by default. So, gas car drivers can test drive the car without it, then turn it on when they are ready to try driving a car with a superior drivetrain. For most people, once you get used to one-pedal driving, you'll find a gas car feels outdated and you'll never want to go back.

Analog Speedometer

The 2018 LEAF drops the large, easy-to-read digital speedometer for a boring analog speedometer. Jose tells me that Nissan thinks people don't like the digital speedometer, that it doesn't provide feedback on acceleration the way an analog speedometer does. I like the digital speedometer and find that having my back pressed into the seat is all the feedback I need on acceleration.

speedometer.jpgProPilot

Nissan did a demo of autoparking at the worldwide announcement, but that feature is only available in Japan, not the United States. Jose gave me the lame company line that US drivers don't use the autoparking feature; maybe we'll get it later. I don't know what the real story is, but that's nonsense.

We got on the freeway and I engaged the ProPilot cruise control feature. As with any cruise control, you get to the speed you want then hit a button. The car will keep you at that speed when it can, but responds to traffic and slows down when there's a slower car in front of you, then speeds back up when the road is clear. It also detects the lane lines on the road and keeps the car centered in the lane. Despite being a nice, sunny afternoon with clearly visible lines on the freeway, the car lost the vision lock a few times and I had to take control. It did slow down when a slower car got in front of us.

It seemed to me like the car was keeping us to the left of center in the lane. Maybe its sensors are better than mine, but I found it a little unnerving when we had a giant semi slowly pass us on the left. I didn't like being so close and took control to put us more center-right in the lane.

When we exited the freeway, I left the ProPilot cruise control on which arguably isn't how it's intended to be used. The exit peels off very gradually for a pretty long, straight stretch. That was working fine, the ProPilot was slowing down to match the car in front of us. As the lane made a gradual curve to the right, the car in front of us was no longer directly ahead, so the LEAF tried to resume full speed. It clearly didn't understand that the lane was curving and that slow car was still in front of us. I disabled the ProPilot at that point.

Maybe it would be cool on a long freeway run, but I found the ProPilot to be too unreliable to really relax and let it drive.

Even when the ProPilot isn't engaged, it watches the road and warns you if you drift in the lane. That happened twice to me, once when I was a little off center and again when the road was curving and I thought I was in the right place.

All-Around Camera

When we got back to the house, I tried out the all-around camera (SL package only). When you pop the LEAF into reverse, the center console screen shows both the backup camera and a simulated overhead view that displays the car's full surroundings. I know the LEAF has had a feature like this available for a few years, but it was super cool to see it in action. It was just like there was a camera over the car looking down to show the car's position in the driveway. It's done with four side camera and math, a very nice effect.

rear-camera.jpgBluetooth Audio

I paired my iPhone 6 up to the car to play some music. That works great, with plenty of volume. The Tesla Model S fails the "enough volume" test when playing Bluetooth from an iPhone. So that was nice.

Premium Bose Sound System

The test drive vehicle was a top-of-the-line SL with all the bells and whistles, including a super-duper Bose sound system which eats up a small slice of the hatch with amplifiers. When I had my iPhone hooked up, I played some Led Zeppelin and found the sound underwhelming. Our Tesla Roadster has a good sound system, with an Alpine headunit we installed. Those Zeppelin tunes sound great there, one of the pleasures of driving the Roadster. Not so much in the LEAF.

trunk-cord-bose.jpg

Heated Seats

We put in a very early order for our 2011, but then postponed it until they came out with the cold weather package late in the 2011 model year. Heated seats are a big win in an electric vehicle because they are more energy efficient than cabin heating, and the heated steering wheel is a guilty pleasure we love. The 2018 offers heated seats and steering wheel with the all-weather package, but it doesn't heat the rear seats. We use our LEAF in the winter and don't want to leave our rear-seat passengers in the cold. With the bigger battery, using the less efficient cabin heater is less of an issue, but we like offering heated seats to our rear-seat passengers.

Summary

Overall, the 2018 is a huge upgrade from our 2011. Not only the increased range from 84 miles to 150 miles (EPA rated range), but amazing one-pedal driving, nicely improved sound insulation and plenty of cool tech available in the higher package levels. Unfortunately, the lack of a fifth headrest makes us less interested in upgrading to a new LEAF.

Quick Chargers: Ignore The Charge Percent!

Electric vehicle drivers are excited to see the first DC Quick Charge stations coming online. Oregon and Washington have done their part to power up the West Coast Electric Highway allowing electric vehicle drivers to travel I-5 from the Canadian border to the Oregon-California border and take advantage of stations that can charge a Nissan LEAF or Mitsubishi iMiEV from empty to 80% in about half an hour. This greatly increases the usable range of electric vehicles for longer trips and also provides a safety net for rare situations when drivers unexpectedly need more than their normal overnight charge.

Unfortunately, there's a problem that is causing a lot of confusion that can result in a driver getting less charge than needed. Even though the stations are working properly, drivers may think something went wrong because of a user interface issue.

AV-DCQC-Screen.pngThe above is the screen from an AeroVironment DC Quick Charge station in Tumwater, WA, as shown while charging our Nissan LEAF in June. The screen shows the driver two pieces of information: the amount of energy delivered to the car and a charge percent.

The problem is the displayed charge percent: it is not the car's state of charge (SOC) and should not be treated as such by a driver to decide when to end the charge.

It's pretty well known that it's difficult to determine the exact SOC of a car's battery. Even the best estimate of the battery's SOC may be off by a few percent. That's not what's going on here. The SOC value reported to the station is completely artificial and differs significantly from the car's estimate of the true SOC.

In addition to showing the invalid SOC value to the driver, Blink quick charge stations also require the user to choose a station-controlled charge limit. This has two big problems. First, the LEAF wants to control the charge and will stop the charge at either 80% or near 100% based on the battery state at the start of the charge, so even if you choose 100% on the station the LEAF will terminate the charge at 80% if the car was at 50% or less when the charge started. Second, the Blink station doesn't know the real state of charge and therefore cannot know when to stop charging at the point it says it will.

Here's an example. I recently used the Blink quick charge station at Harvard Market in Seattle, WA. I arrived with just over a half charge remaining, which means the LEAF will allow me to do a full quick charge up to near full capacity. After plugging in the car, the screen on the Blink station gave me a choice of charge levels, defaulting to 80%, which was the highest level shown. I had to press a "more options" button to be able to choose a 100% charge. The graph below shows data collected from the resulting 52-minute charge, comparing the car's actual SOC with the SOC shown on the station's screen.

Blink_50_to_100_Graph.pngAs you can see, not only is the reported SOC higher than the actual SOC, the reported SOC rises more quickly, increasing the gap as the charge progresses. Throughout the entire charge, the SOC shown on the station consistently overstates the actual charge level and the problem gets worse later in the charge period. As the car gets to about 80% actual SOC, the reported SOC jumps up to plateau near 100% and just sits there for the remainder of the charge, even though the car is far from fully charged.

Had I left the default 80% setting, the charge would have stopped when the reported SOC hit 80%, but the car was really only at 73% at that time. A requested 90% charge would have stopped around 80% actual.

Any driver who sees this behavior and doesn't know that the charge percent value on the station is not the SOC would see it jump up to 97%, perhaps watch it sit there for a few minutes, and likely decide that it would be a waste of time to spend any longer waiting for that last 3%. If the driver ends the charge at that point, the car will be missing perhaps 10% of the potential charge. If that last 10% is needed to finish the journey, this could result in a very unhappy EV driver.

It's not clear where this value comes from, but displaying this invalid SOC on the quick charge stations has created user interface problem with unfortunate consequences for LEAF owners, and perhaps iMiEV owners as well.

So to any EV driver using a CHAdeMO quick charge station that shows an SOC percentage:

1. Ignore what the station shows. Put a sticky over it if you have to. Only look at the car's representation of the SOC.

2. If the station offers you different charge levels, choose 100% charge so that you get the car's best available charge level. If you want to stop the charge early for some reason, do it based on the SOC shown by the car.

I'll contact the quick charge station manufacturers to make sure they are aware of this problem. In the meantime, please help spread the word so EV drivers can get the maximum benefit from these highly valued stations.

For charts of two AeroVironment quick charge sessions, see Cathy Saxton's report. More tips for using quick charge stations are available on our Avoiding Quick Charging Pitfalls page.

1,823-Mile Oregon Coast Tesla Road Trip

oregon-coast.jpg

roadtrip-route-thin.jpgCathy and I took an 1,823-mile electric vehicle road trip to attend the Plug In America board meeting in Berkeley, CA, on June 23rd, 2012. Ever since we took delivery of our Tesla Roadster in June of 2009, I've wanted to take it on a long road trip just to have the experience. Over the past three years, the challenge of making the drive from Seattle to California has been greatly reduced. When Rich Kaethler took delivery of his Roadster in San Carlos, CA, and drove it back to Seattle in August of 2009, and Chad Schwitters made his long trek from Seattle to San Diego and back in April of 2010, these were pioneering efforts. Now we have full speed (240V/70A) Tesla charging along I-5 from British Columbia to southern California, which makes it possible to do the Seattle-to-San Francisco drive electrically in just a couple of days.

However, Cathy and I wanted to take a more leisurely approach and add some new territory to the EV road trip experience, so we made our way down the Oregon and California coast on highway 101, eschewing the more convenient charging established on I-5. Here's what we did, what we learned, and a few adventures we had along the way.

Our Tesla Roadster has a range of about 240 miles at 55 to 60 mph on level freeway in moderate weather. In practical terms, that means we can generally drive 180 to 200 miles without any need to charge in the middle. About four hours of driving per day is our threshold for convenient travel and leaves plenty of time to enjoy a leisurely drive and see the sights, which works well with the Roadster's single charge range.

The coastal drive is a bit of a challenge because there is almost no installed public charging infrastructure. Fortunately, all we need is a power source, and one of the best sources for power is the 240V/50A service commonly available at RV parks. Finding charging is actually pretty easy; the challenge is finding a place to charge and a place to sleep nearby. Cathy did careful planning in advance, finding hotels and motels that either provided charging or were adjacent to EV-friendly RV parks.

Day 1 Because we had a four-hour delay from our intended start time, we cheated and took the easy route south down I-5 toward Portland, taking advantage of 70A charging while eating lunch at Burgerville in Centralia. That gave us enough juice to remove any chance of range concern for our 237-mile drive.

For our first night, Cathy found what turned out to be a wonderful location, the Harborview Inn and RV Park in Garibaldi, OR. The Inn is a modest little motel, but it and the RV park are right on the harbor, which was hard to appreciate when we arrived shortly after sunset, but treated us to a beautiful view as fog was lifting from the harbor when we woke up in the morning.

harborview-rv.jpg
The restaurant options in Garibaldi were pretty limited, so we got dinner in Seaside on the way, then ate breakfast in a dodgy little place in Bay City.


Day 2 We made a couple of stops in Lincoln City where there are two locations with two ChargePoint charging stations each. We didn't find much to do near either location, and we didn't really need to charge, so we took off after a quick bit of exploring. 

Cathy found some information online about the many wonderful historic bridges along the Oregon coast, so we made that our theme for the drive. One of our favorites was Cape Creek Bridge.

cape-creek-bridge.jpg
That night we charged at Charleston Marina RV Park in Charleston, OR. It cost us $23 to use an RV spot to charge overnight, but the folks were very nice and the manager expressed interest in installing EV charging stations. It was fortunate that we had a suite with a full kitchen at Charleston Harbor Inn, because there was very little in the way of restaurants open at the late hour of 5 pm on a Tuesday night. We bought some food at the local convenience store and made dinner.

Day 3 We took in the last of the Oregon coast historic bridges then crossed over into California with a quick stop at the Redwood National Park visitor information center in Crescent City. We stopped for a walk in the forest and a drive up to an overlook of the mouth of the Klamath River to watch gray whales feeding. Late that afternoon, we rolled into the Chinook RV Resort in Klamath, CA. They had all brand new 50A service in nice pretty enclosures that have a bar running right below the outlet, which prevented us from plugging in. The very helpful handyman was able to "modify" the enclosure on spot #2 so that we could plug in.

chinook-rv.jpg
Restaurant options in Klamath are very limited. One place had a big sign out front that said "Now Open" which, as we found out, isn't the same as "Open Now"; they seem to only be open from 11:00 am to 2:00 pm for "breakfast." Another place had people loitering out front and a sign that said "armed guard on duty." That didn't sound very inviting! Again, we had a suite with a kitchen at the RV park, but we didn't have groceries and the only store open in town is a gas station convenience store. We ate at Steelhead Lodge, which is not even a little bit vegetarian friendly. Cathy asked for a baked potato with cheese and was told "we don't have cheese." Definitely, another good place to make dinner in the suite; be sure to do your shopping in Crescent City.

Day 4 Was our most fun driving day, taking the Avenue of the Giants, a portion of the old Highway 101 running parallel to 101, to drive through the Redwoods. Driving a quiet electric car on a road surrounded by the forest canopy was one of my top 2 all time Roadster drives. We also had probably our best meal of the trip, lunch at the wonderful vegetarian Wildflower Cafe and Bakery in Arcata, CA.

We spent the night at the historic Benbow Inn in Garberville, CA. They feature biscuits and tea in the afternoon, an elegant dining room serving a seasonal menu, a rich event calendar (an outdoor jazz concert the night we were there), and free EV charging via a 50A outlet. There's also an associated RV park, which we planned to use until we learned about the hotel charging option. It was the priciest hotel we stayed at, but we just couldn't resist trying out a previously unknown EV-friendly hotel.

Day 5 We needed to drive 213 miles. Just to be safe, we stopped at what turned out to be two SemaCharge stations at Coddingtown Mall in Santa Rosa, CA. Although we'd heard reports that SemaCharge stations don't work with 2010 and later (v2.x) Tesla Roadsters, we were quite pleasantly surprised to find the one we tried worked flawlessly with our 2008 (v1.5) Roadster.

For our hotel in the Bay area, we chose the Four Points Sheraton in Emeryville because it was the closest EV-charging hotel to the Plug In America board meeting in Berkeley. (How can Berkeley not have a ton of public charging? What's up with that?)

Unfortunately, we weren't the only ones to figure out that this is the only charging station near Berkeley as we were unable to use the level 2 ChargePoint station until over 12 hours after our arrival. When we arrived, there was a Volt charging. While we were out for dinner, a Leaf pulled in and started charging from near empty. I happened to wake up way too early and could see the Leaf had finished, so I dashed down to start charging at 5:25 am. I didn't want to leave our very expensive adapter cable out all day, so I took a chance and unplugged when I left to take the bus to the board meeting. Fortunately, I was able to plug back in that evening, finish the charge that night, and top off again in the morning. When we left, a plug-in Prius was using the Level 1 station. When we got home, I checked the data from my Plug In America charging infrastructure study and found that station is one of the most-used ChargePoint stations in the country, averaging 11 hours of use per day.

four-points-sheraton.jpg
Neither the Leaf nor the Volt were driven by hotel guests, and the hotel staff was completely unconcerned that a guest was blocked from charging for over 12 hours. "Those stations are there for the public to use." That's all good, but we chose the hotel because of the charging station. Because of the high use rate, and no preference given to guests, I can't recommend this hotel for a single night stay where charging an EV is required.

Day 6 I attended the board meeting. Cathy visited the California Academy of Sciences at Golden Gate Park and had a quite an adventure with the bay area bus systems, but that could be a blog all on its own.

Day 7 There are a series of Tesla charging stations along I-5 making it possible to drive from the Bay Area to Seattle in two days. We wanted a more leisurely experience, so didn't need use any of them until we were almost home. Our first overnight was in Red Bluff, CA. We stayed at a Super 8 motel and charged across the street at the Rivers Edge RV Resort where we had another adventure. They claimed to have three 50A outlets, but we had to scrounge through the park to find them. We tried five that didn't have power until we finally found success with the sixth. The manager and the park handyman were very supportive and helpful. We ate a tasty late lunch at the New Thai House; the Yelp reviews weren't kidding that the food is spicy. We also took in a movie at the local cinema.

Day 8 In Red Bluff, the Tremont Cafe and Creamery is a decent place for breakfast, although we enjoyed the historical notes on the menu more than the missing-in-action service.

Although we only needed to drive 176 miles to Ashland, OR, we had to climb over the Siskiyous Mountains which means climbing to 4,000 feet, dropping back down to 2,000 then up again to 4,000. We could have done it on a single charge, but decided to try out a charging site in Redding, CA, while taking a walk through the adjacent Lema Ranch Trails.

Lema-Ranch.jpg
The Blink charging station was only delivering 187V (normally it's around either 208V or 240V), so we were only charging at about 75% of the rate we expected. This was fine for what we needed, but not so good if you're counting on a more typical Level 2 charging rate.

Historical note: while crossing the Siskiyous, we saw Tony Williams' Nissan Leaf speed by southbound, making the return trip from his BC2BC tour.

We arrived at the Chanticleer Inn in Ashland, OR, with plenty of charge remaining (25%) despite the serious elevation climbs along the way. Although there is a Level 2 station in Ashland, we arranged with Ellen at the B&B to charge from a 120V outlet. Since we were going to be there for 2 days, that was enough to get us charged (28.5 hours).

chanticleer-inn.jpg
Day 9 We were in town to watch three shows at the Oregon Shakespeare Festival, so we spent a second night in Ashland and had a great time. Ellen was very accommodating, both of our charging needs and our vegetarian diet. She even invited a friend over to see the Roadster which turned into an impromptu car show for our breakfast mates from the inn. It was a much more pleasant stay than at the hotel with the oversubscribed Level 2 charging station.

Day 10 We had a full charge and only a 60-mile drive, so we got to enjoy full-blast air conditioning on a hot day, driving up and down a couple of mountain passes in the left lane not sparing the accelerator pedal at all. I tried to show some restraint, but I have to admit it was more fun for me behind the wheel than for Cathy in the passenger seat.

We charged at the Level 2 AeroVironment station next to the DC Fast Charger while spending the night at the historic Wolf Creek Inn.

Day 11 Nearing the home stretch, we detoured to Corvallis, OR, to visit a friend from the EV community who generously allowed us to charge in his garage while we went out for lunch and had a wide ranging chat about EVs, wacky diets, and lots more.

In Portland, we met up with John Wayland and had dinner with John and his daughter Marissa at our favorite neighborhood Thai place in Portland, Thanh Thao. Sadly, the wonderful Jaciva's chocolate shop and dessert bakery had closed too early for us to visit.

We had another adventure in charging at the Downtown Crowne Plaza. They have two Blink stations, which we've used before without issue. That night, we started a charge at 10:27 pm and hit the sack. At 11:58, my cell phone woke us up with an alert that the charge session had ended abnormally. Concerned that someone might be messing with the car or the adapter cable, I dashed out to check. Nothing was disturbed, but something had terminated the charge session. I can't say for sure whether the Blink station burped, or someone messed with the locking switch on the Tesla connector (and put it back), but I was very pleased that I had an OVMS box (similar to the Tesla Tattler) installed and set to text me if a charge is interrupted. Without that notice, we would have found a partially charged car in the morning and then had to wait five hours before we could depart.

Day 12 We made our usual 30-minute stop at Burgerville in Centralia, WA, for a quick bit of charge and a meal. We totally dig Burgerville for their healthy fare, including vegetarian options, environmental consciousness, and especially for the Tesla charging station they have provided since 2010. From there, it was an easy drive home.

Watt Fun: Driving a Nissan Leaf

In September, we finally got our Nissan Leaf. We had signed up very early in the process, and could have had a Leaf in the spring of 2011, but we decided to put our order on hold until they offered the cold weather package. It was worth the wait!

LEAF.jpgIt's now our primary vehicle and we've put just over 2,000 miles on the odometer. Here's our review of the experience so far.

The Good

Driving Experience We've been driving electric since 2008, so it's easy for us to forget how much better the driving experience is with an electric drive train. The accelerator pedal on the Leaf gives instant, smooth response: you push, it takes off. There's no waiting for a gear shift, and no slow climb to full acceleration the way you have to wait for a gas car to rev up the engine speed to maximum torque, then have to shift gears and repeat. It's just smooth, rapid acceleration all the way. I'm sadly reminded of this every time I fly somewhere and am forced to rent a clunky gas-burner.

Braking The Leaf also features regenerative braking. In a gas car, if you want to slow down you have to hit the brakes. This costs you money twice: you're throwing away the kinetic energy of the car and you're wearing out your brake pads. With regenerative braking, you use the motor as a generator to slow the car and charge the battery pack, plus you avoid wearing out the brakes. Even more than the cost savings, regenerative braking shines when going down a hill. In a gas car, you have to ride the brakes or downshift. Riding the brakes is bad as it heats up the pads and can present a safety issues on long downslopes. Downshifting, or engine braking, is better except that you have to chose one of a few gears. With regenerative braking, you can smoothly control your speed with your right foot, whether you're accelerating up to speed, or holding your speed going downhill. Friction brakes work just as on a gas car when you need to stop quickly.

Controls The Leaf has a built-in touch screen for controlling the navigation system and the audio system (AM, FM, CD, iPod/MP3 player, and the ability to subscribe to satellite radio), as well as viewing car information and setting preferences. There are tactile controls on the steering wheel for the audio system and cruise control, and tactile controls around the touchscreen so you can control the vital systems by touch without taking your eyes off the road.

Backup Camera The 2011 Leaf SL package adds a backup camera displayed on the large center console screen. With the camera, it's so much easier to back up whether it's out of a parking spot in a crowded lot, backing into a spot, or just being able to back up against an edge or wall when getting out of a tight spot. I'm now spoiled and miss this feature when driving a car that doesn't have it.

Touchless Keyless Entry The Leaf detects the keyfob wirelessly so that when you are right next to the car, you can just push a button on the handle to lock or unlock the doors or the hatch. You don't have to fumble to pull your keys out of your pocket or purse, which is incredibly handy when you have an armload of groceries. It's the same for starting the car, no fooling with a key, you just push a button and the car starts as long as the fob is inside the car with you. The car knows the location of the keyfob with enough precision that it won't let you lock the keys in the car and can warn you with a beep if you get out of the car without turning it off.

Quiet Ride It's widely reported that electric cars are quiet; some even wrongly claim they are silent. Electric cars don't have noisy internal combustion engines that have to be muffled. At low speeds they can be surprisingly quiet, although you quickly learn to recognize their unique sound even when they creep up slowly behind you. At speeds above 20 mph or so, they make the same noise as a typical gas car does, which consists mostly of tire noise.

That's the story outside the car. Inside the car, it's tricky to do a good job of insulating road noise while keeping the vehicle weight low to maximize efficiency and range. Even if you get rid of the dominant road noise, you just make it possible to hear all sorts of little sounds that you wouldn't notice in a less insulated car. This is especially difficult when there's no engine noise to mask other drivetrain noises. This is the reason for the Leaf's unusual protruding headlights: they deflect airflow around the side view mirrors to get rid of a wind noise you wouldn't even notice in a noisy gas car.

Our two other electric vehicles sound just like the Leaf from the outside, but inside the Leaf is a completely different experience, by far the quietest riding car we've ever owned. I haven't seen the data, but I suspect it's on par with heavily sound engineered luxury sedans that cost far more than the Leaf.

Cold Weather Comfort Because the Leaf uses electric power to heat the car, it doesn't have to wait for an engine to heat up before it can start blowing warm air. The cold weather package (now a standard feature on the 2012 Leaf) adds heated seats (front and rear), heated side mirrors, and a heated steering wheel. If you're driving in the cold, there's nothing more wonderfully decadent than a heated steering wheel. With the cold weather package, the heated seats and the steering wheel get warm even faster than the cabin air.

The cold weather package also adds a battery heater for really cold climates. That's not an issue in Seattle where we rarely see temperatures below 20°F, but is important in more extreme climates.

Remote Control and Monitoring Using a wireless communications system called Carwings, we can monitor the car remotely to check things like the state of charge. The system sends us a text message if we pull into the garage but forget to plug in.

We can also tell the car to pre-heat from our phones. This is something that just can't be done with a gas car sitting in your garage where running the engine would fill the garage, and possibly the house, with deadly carbon monoxide. If the car is plugged in, it uses grid power for the pre-heating, so it doesn't reduce our range. Most of the time, our driving is nowhere near any concern about range, so we use the pre-heat feature even when it uses battery power to warm the car for our return after it has been sitting in a cold parking lot.

Fuel Cost At the US average cost for electricity (11 cents per kWh), the Leaf can drive 30 to 35 miles per dollar of electricity. If gas costs $4/gallon, that's the equivalent of getting about 130 miles per gallon, not in a gutless, rattling economy box, but in a quiet, comfortable car with excellent acceleration.

If the savings in fuel cost is applied to a buyer's monthly car payment, the Leaf is an incredibly affordable car.

Convenient Fueling The Leaf is best suited for local driving, which fortunately accounts for more than 90% of the typical American's driving. If you can use the Leaf for your local driving, you'll find plugging in overnight to be far more convenient than going to a gas station. Especially if you share a car, you've no doubt experienced the rude surprise of needing to make a detour to a gas station, spend time waiting in line, and pump gas when you're already running late. The Leaf is fully charged every morning with just a few seconds of effort required to plug it in at night, about as much time as it takes to plug in a cell phone. Charge time varies with how far you've driven, anywhere from a few minutes to eight hours, but it doesn't matter at all because it happens while you're sleeping.

I know many people think charging time will be an issue, but I just laugh when I see people waiting in a 20-minute line to save a few pennies per gallon at Costco. Driving electric, I pay the equivalent of $0.99 per gallon of gasoline and fueling takes just a few seconds of my time per day. I can only imagine how long the line would be if Costco sold gas for $0.99 per gallon. I get that price and I can charge up in my garage where there's always shelter from the elements and never a wait.

The Bad

Nissan has done an amazing job with their first full production electric vehicle. It's the most comfortable car Cathy and I have ever owned. It's a wonderful car, with no competition whatsoever at any price when considering the comfort and convenience it offers plus the liberation of not being hostage to wildly fluctuating gas prices. However, Nissan got it wrong on two important aspects of driving electric. The good news is that new electric vehicle drivers will get all of the benefits mentioned previously before they notice these more subtle shortcomings.

Increasing Range Anxiety Range anxiety is the irrational fear of running out of power even when an electric car has plenty of range for your driving needs. The way the Leaf presents information about the car's state of charge causes range anxiety. The dash shows in large numbers an estimate of your remaining range. That sounds pretty reasonable, but it has to make an assumption about how you will be driving for the rest of the trip. The Leaf assumes you'll be driving the same as you have been for some unknown period of time. Unless you do all of your driving under exactly the same conditions, same steady speed and constant slope, that estimate is going to be wrong pretty much all the time since it fluctuates wildly as conditions change.

The best information we get is a 12-segment display that displays the state of charge in approximately 8% increments. The problem is you can't tell where you are in the bar. Suppose I drive from work to the grocery store and the gauge drops from 8 bars to 6 bars. That could be from the top of bar 8 to the bottom of bar 6 (almost three bars, or 24%) or from the bottom of bar 8 to the top of bar 6 (just over one bar, or 8%). That's a big difference.

While the estimated range can be useful in some circumstances, Nissan should give us a way to display the car's state of charge as a percentage. I understand that there is some inherent uncertainty in computing the precise amount of energy remaining, but the raw state of charge should be presented to the driver with the same precision as the estimated miles. Having this information would help drivers better understand their energy use and increase the Leaf's usable range. This is such an important piece of information that owners have figured out a way to display the state of charge by tapping into the Leaf's on-board diagnostic port.

Denying the Best Feature of Electric Driving The regenerative braking offered by an electric car dramatically improves the driving experience. Once you get feel of driving electric, it's a joy be able to control your speed with just one pedal: push down to speed up, lift to slow down. Whether it's uphill or downhill, speeding up an on ramp or slowing down for an exit, you do it all with the accelerator pedal. It's far more natural than how it works on a gas car, it's just different from how we all learned to drive. Nissan was apparently concerned about making the Leaf feel as much like a gas car as possible so as not to scare away consumers afraid of change. To do this, they have two modes, normal and economy mode. In normal mode, there's a limited amount of regenerative braking on the the right pedal. In economy mode, there's more regenerative braking, but acceleration is dampened out. You can get the same acceleration in eco mode as normal mode, you just have to push the pedal farther down.

I want maximum regenerative braking, so I always drive in eco-mode. This makes the accelerator less responsive unless I really push it. I would much prefer a more typical pedal response with the maximum regenerative braking. It's also annoying that the drive mode doesn't persist, I have to put it into eco-mode every time I start driving.

Conclusion

Nissan clearly leveraged what they learned from making the world's first factory-made lithium-ion electric car over ten years ago* to create an incredible first generation production electric vehicle.

The comfort features of the Leaf make it worth the sticker price, even if it had a gas drive train. With efficiency that can't be matched by an internal combustion engine and fueled with cheap domestic electricity, the savings in total cost of owning and driving the Leaf make it the uncontested winner in value for its class of comfort and driving experience, in many ways superior to all gas-powered cars at any price. Add in the environmental benefits and the satisfaction of knowing your fuel dollars stay in the US instead of pouring into the global oil market that threatens our national security as well as our economy, and no other car on the market offers the value of the Nissan Leaf.

If you're in the market for a new car, and typically drive under 60 miles per day, and already own a gas car that you can use for those few longer trips, you owe it to yourself to test drive a Nissan Leaf before investing in another gas car.

* The all-electric Nissan Altra built to satisfy California's short-lived zero-emissions mandate from 1997 to 2003.

EV Efficiency: Tesla Roadster and Nissan LEAF Compared

How do the Tesla Roadster and Nissan LEAF compare in energy use?

Tesla Roadster owners have been driving electric for a couple of years now and have built up knowledge about how much energy is required for many different routes and driving scenarios. New Nissan LEAF owners could perhaps benefit from what Roadster owners have learned, especially in the near term while charging stations are few and far between.

On August 4, 2011, we did a test to answer a couple of questions:

How does energy use in a Nissan LEAF compare to a Tesla Roadster?

Does knowing how much energy a Roadster uses for a certain drive help a LEAF owner plan the charge needed for a long drive?

The Plan

To take a first stab at figuring things out, Cathy and I joined up with her parents, Jim and Barbara Joyce, to drive a Nissan LEAF and a Tesla Roadster on an interstate freeway up a mountain pass. We wanted to compare just the two cars and eliminate as many other variables as possible. We drove up together so we had identical road and weather conditions, put the cars on cruise control to minimize driver differences, and restricted ourselves to using the fan but not air conditioning. From Roadster data collected on previous drives and also a recent LEAF drive up the same pass, we were pretty confident it could be done from the Joyces' home even cruising at 70 mph. We were right.

snoq-70-cars.jpgThe Route

We started at the Joyce residence near where Washington State Highway 18 meets Interstate 90 at Exit 25. Their LEAF started with a full charge. We drove to I-90, recorded trip and energy data at the stop light at the base of the on-ramp, accelerated up to 70 mph, then locked on cruise control. We exited I-90 at Exit 52 and recorded trip and energy data at the bottom of the off-ramp. We puttered around the summit for a bit, got some lunch, then reversed the route, again recording data at the bottom of the on-ramp getting back onto I-90 and again after exiting the freeway back at exit 25.

The Results

The graphs below show energy use for both vehicles up the pass from exit 25 to 52, a distance of 27 miles with a 2,000 foot elevation gain, then the descent back down from exit 52 to exit 25.

snoq-70-energy.png The graph shows that the LEAF used about 6% more energy than the Roadster on the way up and about 13% more energy on the way down. Both vehicles used about twice as much energy on the way up as the way down, although that ratio depends on the slope and speed. For a sufficiently steep road and slow descent, an electric vehicle can actually gain net energy driving downhill. At 70 mph, we did not see a lot of energy production, just low energy driving. At slower speeds, more energy would have been produced on the steep sections of the descent.

The LEAF averaged 2.7 miles per kWh (376 Wh/mi) on the way up and 4.8 mi/kWh (233 Wh/mi) on the way down, for an average of 3.3 mi/kWh (305 Wh/mi).

The Roadster averaged 2.8 miles per kWh (355 Wh/mi) on the way up and 5.5 mi/kWh (206 Wh/mi) on the way down, for an average of 3.6 mi/kWh (271 Wh/mi).

How Much Charge is Needed to Drive a LEAF Up to Snoqualmie Pass?

The LEAF doesn't give an indication of the state of charge to any useful precision, so we could only measure energy use from the trip miles and miles per kWh supplied by the LEAF. In terms of how much charge we used, the LEAF started with a full charge and ended back home with one bar showing and 4 miles on the generally worse-than-useless guess-o-meter. This included under 10 miles of driving between the freeway and home. It was a little surprising that the LEAF charge got so low given that the home-to-home energy use was only about 18 kWh, but the reported 24 kWh capacity of the battery is probably measured at a discharge rate that's lower that what's needed to climb the pass at 70 mph. Also, we know the LEAF hides some reserve charge from the driver.

From this data I conclude that starting from a full charge in Snoqualmie or North Bend, a LEAF can easily make it up and down the mountain at the speed limit without climate control. With climate control on, a bit slower speed may be required.

With a DC Quick Charge to 80% at North Bend, it could probably be done by anyone starting in the greater Seattle metro area.

Having Level 2 charging at the summit would be a big help. Even Level 1 would make a difference for someone spending the day skiing at the pass and wanting to get home with little or no charging on the way back.

Driving at lower speeds would use less charge. Really efficient driving, including better use of regenerative braking on the way down, would further decrease the charge needed.

Comparing the Nissan LEAF and Tesla Roadster

The curb weight of the Roadster is about 2,700 lbs, compared to the LEAF at 3,350 lbs. So the LEAF weighs about 25% more than the Roadster. The LEAF has a more aerodynamic shape, but has a much larger frontal cross-sectional area, so I would expect the LEAF to also have more aerodynamic drag. At freeway speeds, one would expect the aerodynamic drag to be a bigger factor in energy use, but doing a significant climb increases the importance of vehicle weight.

Because of how these two issues interact under different conditions, these numbers tell the story only for this specific drive on this route at this speed. Other drives are likely to give different results, so more tests are needed to get the full picture. It would also be interesting to do the same drive with multiple LEAFs and Roadsters to see how much variation there is between vehicles of the same model.

Data Method and Repeatability

We did everything we could both to minimize the difference between the two side-by-side drives and also standardize the drive so it could be repeated later under either similar or different conditions.

It was warm enough that we had to run the car fans to stay comfortable, but we were able to avoid use of the air conditioning.

We were able to maintain 69 to 70 mph pretty well, with a couple of exceptions. Below are graphs of the Roadster's speed versus time. The LEAF speed profile would be similar, with one exception on the descent, described below.

snoq-70-ascent.pngOn the way up, a few minutes after we got onto I-90, we ran into a clump of traffic we had to maneuver through, which slowed us down a little for a few minutes around the 10-minute mark.

snoq-70-descent.pngOn the way down, just a couple of miles from exiting I-90, the Roadster got boxed in between an RV at the same speed in the center lane and a slower vehicle entering just ahead of us. Rather than speed up to jump ahead of the slower vehicle (which would have used a bunch of extra energy), we slowed down sharply to let the vehicle in ahead of us. The LEAF was far enough ahead that it avoided this problem.

EVs at the 2011 Portland International Auto Show

Cathy and I were invited to show our Tesla Roadster in the Eco-Center at the 2011 Portland International Auto Show. Tesla Motors didn't have the resources to participate, so we and Chad Schwitters agreed to show our cars and represent Plug In America in promoting electric vehicles.

Since we got our first EV in 2008, a 2002 Toyota RAV4-EV, we've participated in many car shows. When we started, the EV world was made up of dedicated enthusiasts converting gas cars to electric or holding onto the few vehicles from the early 2000's saved from the crusher (see Who Killed the Electric Car). The Portland show made it clear things have changed: a 30,000 square-foot area at a major auto show dedicated to energy-efficient vehicles, Nissan and GM selling mainstream electric vehicles, other automakers scrambling to jump onto the EV bandwagon, and lots of interest among the show attendees.

01.jpg
The show organizers got in touch with us through our friend John Wayland, who was invited to show White Zombie, the world's fastest accelerating street-legal electric vehicle. John and his team have been advancing the state of the art for 14 years. Not only does White Zombie go from 0 to 60 mph in 1.8 seconds and cover the quarter-mile in 10.2 seconds, it has a driving range of 120 miles. John makes a point of driving it to the track from his home to demonstrate that an electric vehicle can have tremendous performance without making the sacrifices that limit most high-end drag racers to being hauled around on trailers.

02.jpg
We insisted on being placed next to White Zombie so we could hang out with John and his crew, and also point people who thought the Roadster's performance (0 to 60 in 4 seconds) was impressive to a much quicker electric car.

03.jpg
On the other side of us, there was a Nissan Leaf. For people who thought the Roadster's energy efficiency and lack of dependence on oil was cool, but too expensive or impractical, we could point them to a Leaf that costs less than a fourth of the Roadster's price and carries 5 passengers and much more cargo. Nissan had a second Leaf in their main area that was open so people could check out the interior.

04.jpg
They were a day late, but GM did finally get a Volt in the Eco-Center, next to the Leaf. GM also had a Volt in the middle of their main section for the whole show, but it was up on a pedestal and not open for viewing.

05.jpg
To make sure no one thought that EVs were a new invention, there was a 1917 Detroit Electric car on display. These were popular back in the day when cars had to be hand-cranked to start. No one wanted to put up with that inconvenience. It makes me wonder why so many people today are content to put up with the inconvenience of fueling their cars at gas stations and the insanity of sending their fuel dollars into the global oil market that supports really unfriendly governments.

06.jpg
You don't have to drive on four wheels to get the benefits of driving electric: Brammo is marketing a line of all-electric motorcycles.

07.jpg
Straddling the gap between motorcycles and traditional cars are companies like Arcimoto that are building highly efficient, enclosed two-passenger vehicles.

08.jpg
In the fall of 2009, a representative at the Seattle Auto Show told me how the Mini folks were way ahead of everyone else in producing an electric vehicle. The best they have to show so far is a small number of test cars they've put on the market with a one-year lease program. Although it was cool so see the vehicle, it was locked up tight and unattended. The Mini-E could be such an awesome vehicle if they would just get it done and start selling them.

09.jpg
Next year, with even more vehicles available to consumers, I'm hoping EVs will be at the show in force and not relegated to a fringe eco-conscious area. Maybe next year we can be showing front and center in a section dedicated to vehicles that offer instant acceleration, convenient at-home fueling, support for local energy jobs, reduced dependence on the highly volatile global oil market, and increased national security. I suppose we could mention that they are also better for the environment, but I think everyone already knows that.

Electric Vehicle Range and Charging

If you are interested in driving an electric vehicle, I'd like to tell you how to ensure that you'll have a great experience, or at least make sure you don't have a disappointing experience.

Here's the secret formula for EV success: make sure the range of the vehicle suits the driving you plan to do with it. I know that sounds pretty obvious and easy, but there are two big barriers to success: bad reporting in the media and obfuscation by the automakers. There's also a bit of complexity: just like gas mileage, you can't express EV range with a single number. I'll get that all straightened out from the perspective of someone who has been driving all electric for almost two years.

In addition to the general facts of driving electric, we recently got some more specific range numbers for the upcoming Nissan Leaf which I'd like to put into perspective for potential buyers.

Reporting the Obvious and Irrelevant

If you follow EV coverage in the press, you'll find a steady stream of articles from reporters who think they've discovered the flaw that will deflate all of the hype about EVs. Their basic premise is that EVs won't work because they take too long to charge and there's nowhere to charge them. These articles are either totally made up, or based on the bad experience of a single EV driver and don't represent the real experience of the majority of EV drivers who purchased a vehicle appropriate for their needs. My purpose here is to make sure you don't become the excuse for some lazy reporter to write yet another of these uninsightful articles.

Would a newspaper publish an article about a Ford Focus owner who was disappointed that he couldn't fit his wife and seven kids in the car? How about a Honda Civic owner who's mad her car isn't suited for towing an RV? A Hummer owner who's mad about how much it costs to drive a mile? Of course not, these would be laughably obvious mistakes made by the owner in choosing a car.

For the consumer properly informed on the benefits and limits of electric vehicles, it's equally obvious that buying an EV with a 75-mile range to do a daily 74-commute with no charging infrastructure isn't going to yield a happy driver. That's obvious and boring.

The real story is that there is no problem with range or lack of charging infrastructure if you can just charge at home to meet your driving needs, instead it's a real convenience not to have to fuel your car away from home. So let's see if you qualify...

The Rule

To be a happy EV owner today, you want to buy a car that has enough single-charge range to handle all of your daily driving with a reasonable buffer for typical errands without needing to charge anywhere other than your charger. (Your charger is probably installed at your home but might also be at your work location.)

The good news is that for most drivers, the required range is surprisingly low. A 2003 US Department of Transportation survey (PDF) found that 78% of Americans drive less than 40 miles a day. If you're in the 78%, and don't often have big exceptions to that daily commute distance, then an EV that gets at least 70 miles of range in your driving conditions will most likely make you one happy camper. (But keep reading to learn how to evaluate EV range.)

Starting this fall, we'll start to see a lot of chargers getting installed in a few metro areas in the US and other countries. As this happens, and EV ownership goes up, more and more charging will become available and convenient. As that happens, charging away from your home charger will become more dependable and the usable range of EVs will expand as a result. For example, if you can charge at home and at work, then the usable range of an EV is doubled because you only need to travel one way on a single charge (with a reasonable buffer).

Since there's going to be limited availability of affordable, practical, freeway-capable EVs in the near future (as in zero today, and a few thousand Nissan Leafs starting to trickle out starting in December of this year, then more from other automakers to follow), it's OK if the first few models of EVs don't work for you, they will work for millions of potential buyers. Wait for an EV that will be right for your driving needs.

The Win

After you've driven electric for a month, spending just a few seconds to plug in each night to start every day with a full charge, without ever having to stop at a gas station, you'll wonder how you ever tolerated the hassles of driving a gas burner.

In addition, the experience of driving electric is just better: you get instant acceleration without waiting for the engine to rev up and the transmission to shift, another nuisance of driving gas that you'll only notice when you get used to driving without it.

Bonus: no tailpipe emissions, low-to-zero emissions from electricity generation, and never having to worry about the price at the gas pump.

Evaluating EV Range

Just like gas mileage, EV range can't be expressed as a single number. Even the two EPA city and highway gas mileage numbers you see on vehicle stickers don't tell the whole story. This is such a big issue with gas cars, the caveat "your mileage may vary" has become part of our cultural vernacular.

Let's start by going over how gas mileage works. Those gas mileage numbers on the sticker in the window are determined by driving the car on two standard EPA driving profiles meant to simulate typical driving conditions, which have been recently revised to better represent actual driving conditions by including things like using air conditioning on part of the cycle.

Gas mileage depends on a number of factors, including passenger and cargo weight, HVAC use, start/stop frequency, road incline, rain/snow, and so forth, but the biggest factor is speed. At low speeds, gas mileage suffers because there's an overhead of running/idling an engine that burns fuel whether you're moving or not. Stop and go traffic is also bad news, because you invest energy in speeding up only to throw all it all away by converting your car's momentum into heat plus wear and tear on your brake pads. At higher speeds gas mileage suffers because wind resistance goes up rapidly with speed, so much so that it takes more energy per mile in a way that starts increasing dramatically at the low end of freeway speeds. Somewhere in the middle, at a moderate, steady speed, is where you get your maximum gas mileage.

Electric vehicles behave similarly, except they get punished less in stop and go traffic because, like hybrids, they can slow down with regenerative braking wherein the motor is driven by the drivetrain to act as a generator to put charge back into the batteries. This not only improves energy efficiency, but also reduces brake wear.

Given this complexity, how can an automaker tell you how your gas or electric car will perform under your driving conditions? Answer: they can't.

While you can argue that it's even more important to understand energy efficiency (in the form of single-charge range) for an electric vehicle, there's the ugly truth about burning gas that no one likes to talk about: it's no good for predicting long-term fuel costs. With a proliferation of gas stations everywhere, range isn't something you think about for a gas car. What you do think about is your pocketbook. Better mileage means cheaper stops at the gas station. While knowing your gas mileage might tell you what you'll be spending at the pump this month, it doesn't say anything about what you'll be paying next month or next year. Anything from a hurricane, to Wall Street speculators, to a political action by OPEC, to the whim of some oil nation tyrant can cause gas prices to double by barely nudging the precarious balance between world oil supply and demand. Electricity rates are far more stable, especially when it comes from renewable sources that aren't subject to the unpredictable economic forces that rule the world's fossil fuel energy market.

How can a potential buyer figure out if a given EV has the range required to convert from the hassles of driving gas to the joy of driving electric? Read on...

Case Study: the Range of a Tesla Roadster

For most people, buying a $109,000 two-seat sports car is totally out of the question, whether it's a gas-burning Ferrari or an all-electric Tesla Roadster. Being able to go from 0 to 60 mph in under four seconds isn't going to get the kids to school or bring home the groceries from Costco. But, as of this writing, Tesla Motors is the only automaker selling a production, freeway capable electric vehicle in the US. If you dig a little, their web site provides a wealth of information about driving electric that will be of help to any potential EV driver.

The best illustration I have found of the effect of speed on efficiency, and thus range, is this graph from Tesla Motors showing how the Roadster's range varies with speed, while holding other factors constant at favorable values (constant speed, no AC, no driving up a mountain, etc.).

tesla-range-vs-speed.png

The EPA range number for the Roadster is 244 miles. From the graph, you can see that you get that range driving at about 55 mph. If you have to pick one number to describe range for a Roadster encompassing city and highway driving, this is a pretty good choice, and it's a real number that I've personally verified as much as possible without actually driving the car until it stops. Likewise, the value of about 180 miles for 70 mph matches my real-world experience. Simon Hackett and co-driver Emilis Prelgauskas came close to the graph's 34 mph range number by driving 313 miles on a single charge in Australia last year. Perhaps someone will be patient enough to try out the 17 mph peak on the graph at over 400 miles of range, but that would be a very long drive!

I'd say Tesla did a good job here, picking a reasonable single number for stating range based on some combination of the EPA city and highway cycles. They also provide the graph showing the whole story, at least with respect to speed, although to find it you have to dig down into their blog entries to find the article with the graph and full explanation.

But there's a bit more to the story that requires more digging. The above range numbers are for using the entire battery charge from full to empty, something you really don't want to do on a regular basis because it's not good for the life of the battery pack. For normal daily driving, you don't need 244 miles of range, so Tesla provides a "standard" mode of charging that only uses the middle 80% of the battery pack. This will extend the life of the battery pack and still give you 200 miles of range at 55 mph, or about 160 miles at 70 mph. This is between four and five times what most of the drivers in the US need for their daily commute. For daily driving, the range of the Roadster is ridiculously high. Going on a road trip beyond the single charge range is doable, but it requires patience and planning. This situation will get a lot better as high-speed charging stations start to appear later this year.

The numbers also get worse in really hot weather. Last summer I drove from Portland to Seattle in 100-degree weather, about 180 miles. This trip is easy at 55, in fact even at 65 mph it's no problem. But this trip, with the HVAC system using energy to keep the battery pack cool, it took getting off the freeway and careful route planning to reduce both distance and speed to get home without having to stop for a partial charge.

The upshot: if you live in an extreme climate, with either a lot of sub-zero winter days or 100+ degree summer days, you'll want to add more buffer to your required EV range.

The last big issue is aging of the battery pack: as the battery pack ages, its capacity will decrease gradually over time, then drop more rapidly as the battery pack wears out. Our car is performing the same as it did when we got it one year and 9,000 miles ago. Other Roadster owners have crossed the 20,000 mile mark, and so far I haven't heard of anyone noticing a loss of range. Tesla's battery pack warranty is only 3 years or 36,000 miles, which is in line with other high performance sports cars, but is a bit underwhelming compared to their statements of expected battery life, seven years or 100,000 miles. Nissan says their battery pack should last 10 years, and because the Leaf is a much more mainstream vehicle I expect they will offer a much better battery warranty.

Still, if you're planning to drive your new EV for 5 to 10 years, it's not going to be smart to buy an electric car that's right on the edge of meeting your needs with its full factory-fresh range.

Our Electric Garage

In July of 2008, while we were waiting for Tesla to build the Roadster we reserved in 2006, we were fortunate enough to buy a rare 2002 Toyota RAV4-EV from its original owner in Berkeley, CA. If you've seen Who Killed the Electric Car, then you've know what a great electric driving experience the lucky few drivers had during the brief period where California required all of the automakers to find a way to reduce tailpipe emissions to zero.

When we got the RAV4-EV, we expected it would take care of about half of our driving. We were wrong by a wide margin: it took over 95% of our driving. The only time we burned gas was when we each had to be different places at the same time. Despite our EV enthusiasm, we were range anxiety victims and overestimated how much range our driving really required.

In our experience, the RAV4-EV gets about 100 miles per charge. Even staying out of the top 10% and bottom 20% of the battery pack means we can drive 70 miles per charge under our typical driving conditions, and can handle any driving conditions with enough range we don't generally have to think about it.

When our Roadster finally arrived nearly a year later, we were totally converted to the electric driving experience. Having a second electric car meant we didn't have to choose which of us got to drive the smooth, quiet car.

Our hope is that the Leaf will bring this sort of EV capability into the mainstream in an affordable, practical, safe vehicle.

Nissan Leaf Range Numbers

The first range number we heard for the Nissan Leaf was 100 miles using the EPA's LA4 drive cycle. Darryl Siry gets credit for being the first to point out that the LA4 drive cycle is a poor choice for describing EV range as it's a city driving cycle that's nicer to the range than the combined city/highway drive cycle that is used by Tesla. Siry also wrote a great piece on the issues with range numbers and the need for federal regulations on how they are reported which added perspective to my personal experience and helped inform my writing here.

On June 19th 2010, we got some more range numbers from Nissan via Forbes. To summarize:

  • Cruising at 38 mph in 68-degree weather: 138 miles.
  • Suburban traffic averaging 24 mph, 77 degrees: 105 miles.
  • Urban highway, 55 mph, 95-degrees, A/C on: 70 miles.
  • Winter city driving, 14 degrees, averaging 15 mph: 62 miles.
  • Stop and go urban traffic averaging 6 mph, 86 degrees, A/C on: 47 miles.
The Forbes article is typical anti-EV fear mongering, the facts presented with pithy commentary but no critical analysis. Have you ever read an article on how your gas mileage drops in stop-and-go urban traffic during the heat of summer or the cold of winter and how much that's going to cost you when you're driving your gas-guzzling SUV? Of course not. But you do hear about how it will affect the range of an EV that isn't even on the roads yet. It's great to get more facts, but try to ignore the hand-wringing hysteria that makes it sound like the federal government is about to repossess all of the gas burners and force everyone to drive a Nissan Leaf.

The fact is, the Leaf doesn't have to meet the needs of every driver in the US. It just has to meet the needs of the few thousand people lucky enough to be able to buy one in the next year. Even that worst-case 47 miles is going to be good enough for millions of drivers now (remember that 78% of US drivers commute less than 40 miles per day) and good enough for even more drivers when there are convenient chargers at workplaces and malls.

Is the Leaf's Range Right for You?

I think the best way to figure out what range an EV needs to have to suit your needs is to monitor your driving. Just write down your odometer when you get home each night. From that, you can figure out how far you actually drive. Be sure to get not only your regular daily commute, but also some examples of exceptional days with extra appointments, shopping, detours, etc. If you have an additional vehicle that would supplement your EV, throw out any long drives that you would choose (in advance) to handle with that vehicle. Then add a buffer for the unexpected, and, if it applies, more buffer for the extreme driving conditions that reduce range.

People who haven't driven an EV will be tempted to always have half of the battery in reserve for surprises, but most experienced EV drivers are very comfortable driving down to 30% or even 20%. (With the Roadster where I get great feedback on the state of charge and know it won't hurt the battery, I have no problem driving down to 10%. With the RAV4-EV, which gives less precise info, we try to stay out of the bottom 20%.)

If you commute 70 or more miles per day in a city that regularly has horrible traffic, freezing cold or sweltering hot days, and isn't planning for charging infrastructure, then don't buy a Leaf to be your only car this year. Wait until the cars and the charging better suit your driving needs. There are more than enough of us to buy up every single Leaf Nissan can make in the next 12 months, so don't become fodder for another annoying article about how EVs are impractical because someone bought one that's not suited to their driving.

If the Leaf's range numbers do suit your driving needs and you want to get an early start driving electric, then sign up, right now. They are going to sell fast. But before you fully commit to a purchase, get the information you need to determine if the Leaf will meet your needs, and get that info directly from Nissan. Don't depend on a conversation with your local auto sales drone.

I'm glad we have learned more about the Leaf's range months before anyone will be committed to buying one. Next up I want to see a graph like Tesla gives for the Roadster range vs. speed under optimal driving conditions. I also want to know if the range numbers given are for using the full battery to its maximum range, or if they include allowance for the reserves at the top and bottom of the charge cycle needed to maximize battery life.

If the Leaf will meet your needs, you won't regret switching away from gas. The benefits of charging convenience and drivability are great motivators to be among the early adopters to buy one of the first mainstream factory electric vehicles.



Track Day at Pacific Grand Prix

On March 17, six Seattle-area Tesla owners joined the Evergreen Lotus Car Club for a track day at Pacific Grand Prix, the new smaller track next to Pacific Raceways in Kent, WA. The folks at Pacific Grand Prix were excited to have a bunch of Tesla show up. We were treated to unseasonably nice weather, clear and sunny except for a brief hail storm.

Trevor Cobb of the ELCC did a wonderful job of organizing the event and we really appreciate his invitation to the Tesla cousins.

100317-pacific-grand-prix_ampitup.jpg (photo courtesy of David Caley)

The track is 30 feet wide and 0.8 miles long. It's used for go cart rentals as well as track days for full size cars. As you can see from their web page, the track is all about turns with just a couple of short straightaways, so the speeds are kept under control. There were no timers on the track, so it was all about learning the track and improving your own driving. I did some autocrossing in the mid-90's, so this was somewhat familiar territory, although less forgiving of big mistakes. (The day went fine, the only notable off-course driving was a Lotus driver who sprayed dirt all over the track with no harm done to car or driver.)

A couple of months ago, the Pacific Grand Prix folks attended a Seattle Electric Vehicle Association meeting to let the community know they are supportive of EVs. At that meeting, Daniel Davids, long-time local EV advocate and now president of Plug-in America, offered up some tips to the group from his extensive track-driving experience. So, when I got the email from Trevor inviting the local Tesla owners to join in on their track day, I offered to Daniel that we could split the driving if he'd give me some pointers. He accepted.

We arrived at the track at 8:00 am, drivers meeting at 8:30 and the first group hit the track at 9:00. The second group was the six Roadsters. We got 15 minutes of driving, then about an hour wait between runs.

I took the first run and Dan talked me through it, helping me to improve on each lap. Between runs Trevor offered up some helpful tips also. On the second run, Dan showed me what a Roadster can do with a skilled driver behind the wheel. It was a little frightening at first, then I could see that he knew what he was doing and that I was in a for a real treat. Dan just swept through the turn combos where I was struggling with the steering wheel. He made everything look smooth and easy, except for figuring out how the passenger is supposed to hang on through all of that lateral acceleration without a steering wheel to grip. After seeing it done well, my run in round 3 was greatly improved.

Depending on the driver, each run was consuming between 3 and 7 ideal miles per driven mile. On my first tentative run, I used 21 ideal miles in 7.5 actual miles. Rich, an accomplished track/autocross driver, used 36 ideal on that same run. Dan managed to burn 35 ideal miles on the second run, even though he exited the track after only 5.2 miles.

It was also fun to compare the recent energy use screens between me and Dan. Here's mine after the third run:


You can see I averaged 761 Wh/mi over the last five miles after the cool down lap and exit from the track. In normal driving, the average is more like 260 Wh/mi, with occasional green spikes for acceleration, but here it's solid green with dips for occasionally getting off the pedal. Doing the math from the trip meter says I used 841 Wh/mi for that run. Now, here's Dan's graph from the second run:


There is no letting off the pedal for Dan, at least not for long enough to show up on the graph, and the graph is pegged at 999 Wh/mi. Doing the math from the trip meters says Dan averaged 1,423 wH/mi on that run.

There was supposed to be 240V charging at the track, but there was a problem with that circuit, so we searched out all of the 120V outlets around the track and charged as much as we could. Even with that little charging, I had plenty of charge for the 25 miles home when I had to leave around 3:00, I could have easily stayed for the last run. Others who had a longer drive were charge constrained and had to leave early. The track folks are very open to getting better charging installed, so future events should be easy for everyone.

Birthday Puzzle Treasure Hunt

Cathy and I are both puzzle nuts. We have two daily puzzle calendars to jump start our brains during breakfast. Cathy has a diverse taste in puzzles and is frequently working her way through a book of Japanese puzzles while I'm reading the newspaper at night. I'm not talking about Sudoku, she chews through puzzles like Kakuro and Hanji.

In addition to solving puzzles, she also likes to create puzzles, which is much harder and far more time-consuming than solving them. Quite often, I get a sequence of puzzles on my birthday each of which has an embedded clue to the next puzzle, eventually leading to my birthday gift.

This year we were extremely busy for the two weeks leading up to my birthday. We spent a week in Hawaii prepping our condo for a new rental agency, then spent the next week being EV groupies attending all of the Nissan Leaf events in Seattle, then on Saturday Cathy was the head judge at the Washington State FIRST LEGO League Championship. Anyway, we were busy and I was sure Cathy didn't have time to create any puzzles.

So, I was quite to surprised to find a puzzle sitting on the bar at breakfast. I like doing Marilyn vos Savant's Numbrix puzzles that accompany her column in Parade magazine, so Cathy created a jumbo size version. This is probably the only puzzle format for which I am more practiced at solving than Cathy, but she still managed to create a puzzle in that format, larger than normal, challenging for the type, and yet still solvable.

numbrix.gifIt was a good puzzle and I enjoyed solving it. If you want to try, download this PDF version. When I was done, I was amazed she had created such a nice puzzle and couldn't imagine when she had time. I wondered if it was the first clue of a treasure hunt, but I didn't want to assume it was and have her think I was disappointed to have just a single puzzle. I also couldn't imagine how solving a Numbrix could yield a clue to another puzzle. While all of this was running through my brain, she was giving me the look that says, "you're not done yet." Stop reading now if you want to try to find the clue to the next puzzle without a hint.

While I was solving the puzzle, I realized that sometimes when I work these puzzles, instead of writing in the numbers, I just draw the path through the sequence connecting the centers of the boxes in order. It actually occurred to me that might be interesting, but I couldn't imagine how that could yield a message. Cathy realized that by drawing lines in the manner I described, there are 7 letters that can be easily formed: CEHISUY plus maybe a couple of others like T and L that might work but leave odd shaped areas to be filled to complete rectangular blocks. If you solve the puzzle then draw the sequence line you'll see a word that told me where to look for the next puzzle.

xword-2009.gifIf you'd like to try working this one on paper, download the PDF version. Four of the clues require a bit of inside knowledge, but it's probably doable anyway. Stop reading now if you want to try it without any hints, if you perhaps know the cars we drive, enjoy shows at the Village Theatre and were an applications programmer at Microsoft in the 1990s.

1 Down is a reference to the Hungarian naming convention used by some programmers at Microsoft where "max" means "one more than is allowed." This photo of one of our cars  will give you the answer to 4 and 6 Down. 25 Down is a reference to a line in Chasing Nicolette, but you can probably get it from the other clues without knowing the show.

After solving that puzzle, you can find another hidden clue that told me where to find an envelope containing my birthday gift: a signed print of this xkcd comic which is an alarmingly accurate a description of what Cathy has to deal with all too often.



Nissan Leaf Test Drive

Today, Cathy and I both got to drive the Nissan Leaf test vehicle, apparently a Nissan Versa outfitted with the Leaf's drivetrain. Coincidentally, last week we rented a Versa on vacation, so we were treated to a virtual side-by-side test of gas versus electric. They had a course laid out with cones in a parking lot, which I treated as a small autocross course. The test vehicle handled well and had good pick-up, better than the gas-burning Versa.

0310-091209-tws-IMG_1366.jpg

Most interesting was how quiet it was. The Roadster has a loud gearbox whine when accelerating, plus road and wind noise. The whine is much quieter than a gas engine doing similar acceleration, but it's not silent. The RAV4-EV has a comparable road noise level, maybe a few dB below the Roadster and minus the loud drivetrain whine. Both the Roadster and RAV4-EV are about 7 to 8 dB noisier than Cathy's parents' Honda Accord doing 60 mph on the same section of average freeway surface. (We measured all three vehicles with a Radio Shack sound level meter.) The Nissan test vehicle was very quiet from the inside, I think quieter than the Accord, but we didn't do any measurements. From the outside, you hear the same tire sound you hear from any decent modern sedan.

Before buying, I'd want to take it for a real test drive, get it up to speed on the freeway, etc. That said, based on our test drive today, I'd highly recommend it to anyone who is an early adopter, very interested in driving an all-electric family sedan, and whose driving habits could be met by the Leaf's range.

That assumes that Nissan doesn't bungle the whole thing by forcing buyers into some ludicrous over-priced battery lease.

0262-091209-tws-IMG_1318.jpg

0269-091209-tws-IMG_1325.jpg

0286-091209-tws-IMG_1342.jpg

2  

Find recent content on the main index or look in the archives to find all content.