Results matching “charging”

Tesla Roadster Battery Capacity Over Time and Miles

Tesla Motors was the first automaker to sell a production electric vehicle based on lithium ion batteries, the Tesla Roadster. Current Roadster owners as well as other prospective electric vehicle owners are interested to know how these batteries will hold up over time and miles.

It's still pretty early in the game. Tesla Motors tells us that we should expect to have our battery packs holding 70% of their original capacity after 5 years or 100,000 miles. The oldest Roadsters are a bit over three years old and some vehicles are getting up into the 30,000+ mile range.

How are the battery packs holding up so far? I've collected data from 20 owners in the Pacific Northwest to get an approximate idea of our batteries are performing.

Before we dive into the results, I should explain a bit about how battery capacity is instrumented on the Roadster. The Roadster has two primary charging modes. Standard mode charges up to about 90% of the pack's capacity and holds the bottom 10% of the capacity in reserve. Range mode fully charges the battery pack and shows the full range available, including the bottom 10%. The range is shown in two ways, "Ideal Range" and "Estimated Range." Estimated range states the range based on recent driving history and so can't be compared across vehicles. Ideal range shows how many miles you can drive in the current mode if driving with the same mixed city/highway average energy use that gave the Roadster its EPA -rated 245 mile single charge range. The corresponds, for example, to driving 55 to 60 mph on level freeway in moderate weather.

First, let's see how miles driven affects battery capacity.

Capacity-Miles.pngThe red squares at the top of the graph show the range mode capacity expressed in ideal range miles (aka ideal miles) versus miles driven on each battery pack. The blue diamonds show the standard mode range. The straight lines show the tread for each set of readings. I interpret this graph to show that for this set of vehicles, individual variation between cars is larger than the pack degradation over approximately 30,000 miles. For range mode, the variation between cars is as much as 15 ideal miles between cars with comparable mileage, while the linear trend shows a drop of only 5 ideal miles across 30,000 miles of driving. For standard mode, the variation between cars of comparable mileage is under 10 ideal miles while the trend line shows a drop of perhaps 6 ideal miles.

Lithium ion batteries lose capacity over time even if you don't use them. The graph shows the same vehicles over time instead of miles.

Capacity-Age.pngAgain, we see the same apparent patterns: variation between vehicles is larger than the average range lost over three years and variation in range mode is larger than the variation standard mode.

While this is enough data to see some patterns emerge, it's a small fraction (about 1%) of the total Roadsters on the road. I'd like to collect more data to confirm these trends and also separate the effects of time and miles. Most of the Roadsters in this set are in the relatively mild coastal climate of Oregon, Washington and British Columbia. It would be interesting to analyze data from Roadsters in more extreme climates.

Where Do You Gas Those Things Up?

updated 9/6/2011 2:42 pm: added nerdy charge graph

Last week, Cathy and I took the Roadster for a car show and week of island hopping through Washington's San Juan Islands and Vancouver Island in British Columbia. It was a lovely trip and unique in our EV road trip experiences in that we did the entire 450-mile trip using only 120V charging.

We are frequently asked where we charge our electric cars. The question is often accompanied by a pained expression that tries to offer sympathy for the sacrifice we make by driving electric. The answer is: mostly at home. People are frequently surprised to learn we have found it to be more convenient than going to a gas station.

Occasionally, we take a trip that requires charging on the road. That generally requires planning and finding electric vehicle charging stations. For this trip, there were some charging stations available, but they turned out to be both overpriced and unnecessary. We had chosen B&Bs that would allow us to charge from normal household outlets. On one island this was a big help as there were two otherwise equivalent choices: one that wanted to charge us $20 to use $1.60 worth of electricity and another that said we could do it for free. We gave our business to the one that didn't think we were incapable of doing math. Since we were taking a leisurely tour, and mostly on small islands, overnight charging at 120V was plenty for our daily driving needs.

The convenience of being able to fuel up from any outlet became especially apparent when we drove past this gas station in Sooke, BC.

07.jpg

We were on our way to Port Renfrew, some 45 miles further west along the southern coast of Vancouver Island. Had we been in a gas car, this would have been our last chance to gas up before our return, some 90 miles for the roundtrip plus any side excursions. Because we were in an electric car, and outlets are far more common than gas stations, we didn't care.

At Port Renfrew, we were going to be staying in a yurt at the Soule Creek Lodge. We'd contacted them in advance and knew they had an outlet we could use to charge the car. Charging at 120V only yields about 3 to 5 miles of range per hour of charging, which is painfully slow if you are waiting while you charge, but totally adequate if you're sleeping through it.

yurt_charging.jpg

Our one night there, we picked up 53 miles of range, which was plenty to get us through the next day's driving.

My only regret for the trip was not getting a photo at Wildwood Manor on San Juan Island where we had deer grazing next to our charging car. Somehow you just never see deer grazing at a gas station.

Nerdy Charge Graph

Here's a graph of our state of charge for the trip. It shows the car's range in standard mode ideal miles, which means we can go that many miles at 55 to 60 mph on the highway, with another 25 miles in reserve.

soc_graph.png

The first steep dive is the 90-mile drive to Anacortes, WA, to catch the ferry. Then there's a flat spot while we wait five hours after missing the cut-off for the unexpectedly popular first ferry by 5 minutes. Over the next three nights, we charged up overnight on Lopez and San Juan islands working back to a full standard mode (90%) charge, then a fourth charge returned us to full again. There are also a couple of little afternoon charges in there. The fifth charge is in Victoria, BC, after which the car stayed parked for a full day, then we did a range mode charge prior to departing for Port Renfrew. The overnight at Soule Creek Lodge got us back up to the top of standard mode (about 190 ideal miles). Finally, the long 170-mile drive home with a short stop for lunch then a longer stop for the ferry ride. We got home with 10 miles of range left (thanks to my heavy right foot as it became clear we had plenty of charge), plus the 25 miles in reserve. The last spike shows the steep slope of 240V/32A charging at home.

A LEAF could do a pretty similar trip. Depending on the starting point, it might need a little charging on the way to Anacortes (like spending an hour or two at a J1772 charging station at the Burlington outlet malls instead of spending five hours in the ferry line). Instead of spending two nights with a full day in Victoria (where we didn't drive or charge), spend one night in Victoria on the way out and the second night on the way back.

EV Efficiency: Tesla Roadster and Nissan LEAF Compared

How do the Tesla Roadster and Nissan LEAF compare in energy use?

Tesla Roadster owners have been driving electric for a couple of years now and have built up knowledge about how much energy is required for many different routes and driving scenarios. New Nissan LEAF owners could perhaps benefit from what Roadster owners have learned, especially in the near term while charging stations are few and far between.

On August 4, 2011, we did a test to answer a couple of questions:

How does energy use in a Nissan LEAF compare to a Tesla Roadster?

Does knowing how much energy a Roadster uses for a certain drive help a LEAF owner plan the charge needed for a long drive?

The Plan

To take a first stab at figuring things out, Cathy and I joined up with her parents, Jim and Barbara Joyce, to drive a Nissan LEAF and a Tesla Roadster on an interstate freeway up a mountain pass. We wanted to compare just the two cars and eliminate as many other variables as possible. We drove up together so we had identical road and weather conditions, put the cars on cruise control to minimize driver differences, and restricted ourselves to using the fan but not air conditioning. From Roadster data collected on previous drives and also a recent LEAF drive up the same pass, we were pretty confident it could be done from the Joyces' home even cruising at 70 mph. We were right.

snoq-70-cars.jpgThe Route

We started at the Joyce residence near where Washington State Highway 18 meets Interstate 90 at Exit 25. Their LEAF started with a full charge. We drove to I-90, recorded trip and energy data at the stop light at the base of the on-ramp, accelerated up to 70 mph, then locked on cruise control. We exited I-90 at Exit 52 and recorded trip and energy data at the bottom of the off-ramp. We puttered around the summit for a bit, got some lunch, then reversed the route, again recording data at the bottom of the on-ramp getting back onto I-90 and again after exiting the freeway back at exit 25.

The Results

The graphs below show energy use for both vehicles up the pass from exit 25 to 52, a distance of 27 miles with a 2,000 foot elevation gain, then the descent back down from exit 52 to exit 25.

snoq-70-energy.png The graph shows that the LEAF used about 6% more energy than the Roadster on the way up and about 13% more energy on the way down. Both vehicles used about twice as much energy on the way up as the way down, although that ratio depends on the slope and speed. For a sufficiently steep road and slow descent, an electric vehicle can actually gain net energy driving downhill. At 70 mph, we did not see a lot of energy production, just low energy driving. At slower speeds, more energy would have been produced on the steep sections of the descent.

The LEAF averaged 2.7 miles per kWh (376 Wh/mi) on the way up and 4.8 mi/kWh (233 Wh/mi) on the way down, for an average of 3.3 mi/kWh (305 Wh/mi).

The Roadster averaged 2.8 miles per kWh (355 Wh/mi) on the way up and 5.5 mi/kWh (206 Wh/mi) on the way down, for an average of 3.6 mi/kWh (271 Wh/mi).

How Much Charge is Needed to Drive a LEAF Up to Snoqualmie Pass?

The LEAF doesn't give an indication of the state of charge to any useful precision, so we could only measure energy use from the trip miles and miles per kWh supplied by the LEAF. In terms of how much charge we used, the LEAF started with a full charge and ended back home with one bar showing and 4 miles on the generally worse-than-useless guess-o-meter. This included under 10 miles of driving between the freeway and home. It was a little surprising that the LEAF charge got so low given that the home-to-home energy use was only about 18 kWh, but the reported 24 kWh capacity of the battery is probably measured at a discharge rate that's lower that what's needed to climb the pass at 70 mph. Also, we know the LEAF hides some reserve charge from the driver.

From this data I conclude that starting from a full charge in Snoqualmie or North Bend, a LEAF can easily make it up and down the mountain at the speed limit without climate control. With climate control on, a bit slower speed may be required.

With a DC Quick Charge to 80% at North Bend, it could probably be done by anyone starting in the greater Seattle metro area.

Having Level 2 charging at the summit would be a big help. Even Level 1 would make a difference for someone spending the day skiing at the pass and wanting to get home with little or no charging on the way back.

Driving at lower speeds would use less charge. Really efficient driving, including better use of regenerative braking on the way down, would further decrease the charge needed.

Comparing the Nissan LEAF and Tesla Roadster

The curb weight of the Roadster is about 2,700 lbs, compared to the LEAF at 3,350 lbs. So the LEAF weighs about 25% more than the Roadster. The LEAF has a more aerodynamic shape, but has a much larger frontal cross-sectional area, so I would expect the LEAF to also have more aerodynamic drag. At freeway speeds, one would expect the aerodynamic drag to be a bigger factor in energy use, but doing a significant climb increases the importance of vehicle weight.

Because of how these two issues interact under different conditions, these numbers tell the story only for this specific drive on this route at this speed. Other drives are likely to give different results, so more tests are needed to get the full picture. It would also be interesting to do the same drive with multiple LEAFs and Roadsters to see how much variation there is between vehicles of the same model.

Data Method and Repeatability

We did everything we could both to minimize the difference between the two side-by-side drives and also standardize the drive so it could be repeated later under either similar or different conditions.

It was warm enough that we had to run the car fans to stay comfortable, but we were able to avoid use of the air conditioning.

We were able to maintain 69 to 70 mph pretty well, with a couple of exceptions. Below are graphs of the Roadster's speed versus time. The LEAF speed profile would be similar, with one exception on the descent, described below.

snoq-70-ascent.pngOn the way up, a few minutes after we got onto I-90, we ran into a clump of traffic we had to maneuver through, which slowed us down a little for a few minutes around the 10-minute mark.

snoq-70-descent.pngOn the way down, just a couple of miles from exiting I-90, the Roadster got boxed in between an RV at the same speed in the center lane and a slower vehicle entering just ahead of us. Rather than speed up to jump ahead of the slower vehicle (which would have used a bunch of extra energy), we slowed down sharply to let the vehicle in ahead of us. The LEAF was far enough ahead that it avoided this problem.

Progress on the Roadster Conversion to J1772

We've made some progress on a more robust Roadster J1772 conversion. As part of the conversion, we want a circuit that monitors the J1772 proximity pin and cuts the pilot signal when the latch on the connector is released. With such a circuit, a Roadster will behave as a proper J1772-compatible EV and stop the current flow when the J connector's latch is opened, thus preventing any damage to the connector pins which can occur when pulling out the plug while charging.

Cathy and I worked up the basic idea together and got a bunch of help from the EV community. Cathy put in a ton of work selecting components, soliciting feedback, iterating the design, and designing the circuit board. Our solution works without drawing any power from the car, it just uses a tiny bit of power from the incoming line voltage during charging.



We just got the first set of boards back, put one together, and tested it. It works beautifully, performing even better than I had hoped. The response time from when the switch on the connector is pressed until the pilot signal is cut is about 2.2 milliseconds. When hooked up during a charge, there's no perceptible delay between when the J1772 latch is pressed and when the Roadster stops charging.

Even more geeky information is available on Cathy's page of cool details.

In other news, the cable vendor that said they could produce the replacement inlet assembly cable for us took six weeks of excuses and delays to finally say they don't want to do it. So, we're back to the drawing board on that.

Celebrating Three Years of Driving Electric

Our EV experience started in July, 2008, when we bought one of the few RAV4-EVs that was saved from the crusher. A year later, we took delivery of a Tesla Roadster. For the past three years, we've been committed to drive, test, measure, show, demo, hack, and explain our cars and what they represent to anyone willing to listen.

2EVs.jpgWe have driven the RAV4-EV over 20,000 miles and the Roadster over 18,000. The only maintenance we've had to pay for has been replacing tires and a 12V accessory battery. Since we don't have to take our cars in for oil changes every three months, we have to fill the wiper fluid ourselves.

Sometimes I wonder if the Roadster has lost some acceleration over the past two years, it just doesn't seem that crazy fast to me anymore. Yet when I take someone for a demo ride and they gasp/yell/squeal/swear when I do the 0-60 demo, I realize the car hasn't changed, I've just gotten used to what it can do.

NEDRA-Nationals.jpgI've broken 100 mph on a quarter-mile drag race track so many times it's boring. I've been in the passenger seat with a real race car driver showing me what the car can do on an autocross track, and then giving me pointers while I drove the same course.

The RAV4-EV is less flashy than the Roadster, but it can haul five adults and a fair amount of cargo. Even with 64,000 miles it's still getting over 100 miles of range per charge, about the same as when it was new. It gets a little less range in the winter, but it still surprises me how little we need to drive beyond its range. Cathy laughs at me when I worry we need to take the Roadster for some lengthy drive, but when I check the distance it turns out to be half of what the RAV4-EV can do on a single charge.

Cathy and I have done enough distance driving in the Roadster that it's old-hat now. With a few strategic Tesla charging stations scattered around, plus maps of places to find alternative charging, planning charging stops is now an opportunity to explore somewhere new that in the old days we would have just driven past. We had a delightful lunch at a scary-looking tavern in Artic, WA, that had the same sort of local regulars you'd expect to see in an episode of Cheers. We have a new favorite burger joint, Burgerville, which means something for two vegetarians. We have made friends in Portland, Ellensburg, Coeur d'Alene, and Vancouver, B.C., and at Puget Sound Energy and the Wild Horse wind farm.

Artic Charging.jpg
We have talked ourselves hoarse at many car shows (both official and impromptu) and I can't even guess how many people we've had the pleasure of talking to about driving electric. Long ago, I lost count of how many times we've helped a reporter write a more informed article about EVs.

With all we've done and as many people as we've personally reached, it's humbling to know many people in the community who have been doing even more of the same thing, some for decades.

We've made many friends from the Roadster and RAV4-EV owner communities and the broader EV community; too many amazing people to even try to enumerate.

What a wonderful experience it's been to AMP IT UP!




Showing EV State of Charge

Nissan has done a poor job of communicating state of charge to LEAF owners.

LEAF-SOC.jpgThe first problem with this display is that you can't tell where you are with a simple glance. Quick: how many bars are there? Imagine if only some are lit up, how long does it take to count them? Once you have counted the bars, you have to divide by 12, or multiply by 8.3%. Like I want to do that while I'm driving! There's a nice number there, 93 miles, but the problem is that number varies wildly based on how you've been driving. Your state of charge might be 40% but the range estimate could be 12 miles if you just reached the top of 4,000-foot pass, or it might be 80 miles if you have been descending from that same pass. Likewise for just getting off of a stretch of 75 mph freeway versus getting onto the freeway after a stretch of 45 mph urban thoroughfare.

Drivers need to know what's in the battery unfiltered by a rating on their recent driving.

This isn't just my opinion, or the opinion of a few old school EV fanatics. I keep hearing from new LEAF owners who after a few weeks of driving realize that the estimated remaining miles on the LEAF dash is not useful. It's not that Nissan did it badly, or that it can be fixed by improving their software, it's not what EV drivers need.

Ford is coming out with the Ford Focus Electric this year and is apparently asking for opinions on what drivers want to see on the dashboard.

First off, Ford should be asking what gas car drivers want to see and putting that in their ads, but they should be asking what experienced EV drivers want to see and put that on the dash. Ford should start with dropping a line to the folks at Plug In America.

When I'm driving, I don't want to see animations or flashy graphics in my main field of view. I'm not watching a movie, I don't need special effects, and I definitely don't need running commentary on my driving. The LAST thing I want to see on the dash is any mention of gasoline. Did the Model T need a gauge showing how many bales of hay had been saved?

Please don't let some gas-driving marketing intern design the dash for an electric vehicle based on talking to other people who haven't owned an electric vehicle.

My wife and I have been driving electric for three years and have logged over 38,000 electric miles. We've done lots of local driving and enough road trips beyond our single charge range that we know what we need.

What I do want to see, in order of importance, is:

  1. Speed, preferably numerical, very easy to read at a glance, the biggest number on the screen.
  2. After speed, the single most important information an EV driver needs is the state of charge, SOC. This should be conveyed as remaining charge energy, in numerical resolution comparable to a mile's worth of driving, and not mangled by some unknown function of my recent driving and road conditions.
  3. Instantaneous energy use. This should be graphical and clearly show whether I'm using or generating energy and how much, even when it's a small amount. Having a number would be nice, but not necessary.
  4. Trip meter, preferably selectable from several. Having a trip meter that automatically resets after each full charge would be cool, but we still want user-controlled trip meters.
  5. Estimated miles remaining based on recent driving is rarely useful, but it would probably be weird to not have it available. Most people think that will be useful until they get used to driving electric. Not having it would be a distracting omission for new owners. It can be on the dash, even on by default, but there should be a way to get rid of it, perhaps making it an alternate to an absolute remaining energy number.

The purpose of showing the state of charge isn't really about figuring out how far you can drive with the current charge. The answer to that question depends on too many factors to ever be a meaningful single number on the dash. Instead, the EV driver needs to answer two simple questions:

1) Do I have enough energy to make it to my destination?
2) If the answer to #1 is "maybe", how do I need to moderate my driving to make it?

Most of the time the answer to #1 is an unconditional "yes". An answer of "no" means it's time to find charging, a condition that should be rare if the car is being used for local driving as intended. If the answer to #1 is "maybe", then I need the best information possible to answer #2.

Note that an estimated range is always wrong when it matters because it assumes my driving style and road conditions are going to remain constant. It's basically telling me how I have been driving. I don't care about that. I need the information that will make it clear how I need to be driving for the rest of my trip.

For this reason, the choice of energy unit for the SOC display is critical. I want something more convenient than kWh, something that will not require doing math to interpret the number. If a vehicle has a certain stated nominal range, which corresponds to X Wh per mile (battery-to-wheel), then the ideal energy unit is X Wh. Tesla calls this an "ideal range mile." Call it whatever you like, but it's a very convenient unit of energy as it tells me how much is in the battery and gives me a range goal I can generally meet or even exceed if I need to.

If a car has a nominal range of 100 miles, then SOC percent corresponds to one mile of nominal driving. That's cool, but it doesn't generalize very well. When next year's model has a range of 140 miles, I don't want to have to multiply SOC percent by 1.4 to get nominal miles.

Showing SOC as kWh is even worse. Not only do I have to multiply by some goofy factor, it's a different factor for every car depending on weight and aerodynamics. Showing kWh used as part of a trip meter is awesome, and showing SOC in kWh has a certain appealing geek factor, but I don't want that to be my best-resolution SOC unit.

We'll all be better off if the car companies start showing SOC as nominal miles now.

SOC145.jpg
On the Roadster, an "ideal range mile" is the amount of energy needed to drive one mile on the combined EPA driving cycle and corresponds to driving level highway at about 57 mph in moderate weather. Knowing this number and my miles to destination tells me how I need to drive to make it. This number slowly ticks down as I drive (occasionally ticking up on a long downhill drive), it doesn't fluctuate wildly as I go up and down shallow slopes and small hills. Nominal miles yields a much more reliable idea of remaining charge than an estimated-miles number can.

Having this number enables useful discussions about range and energy use among owners. If someone is planning a trip over the pass from Bellevue to Ellensburg, I can say that I've done that several times: traveling the ~100 miles over the 3,000-foot pass at 60 mph in moderate weather used 113 ideal miles and closer to the 70 mph speed limit used 119. It also makes planning for elevation possible. Every 1,000 feet of climbing uses up about 7 miles of nominal range, and going downhill gives about half of that back. Knowing that simple approximation makes it possible for a driver to plan a trip over a mountain pass just by knowing the required distance and elevation change. If other automakers use the appropriate nominal mile energy unit, these conversations will work across different makes and models, allowing drivers to share approximate energy expectations without a lot of goofy conversion math.

That probably sounds complicated. Just remember, electric vehicles are intended for local driving within their single-charge range. Most of the time the answer to the "do I have enough charge" is "yes, of course you do." It's only for the rare long trip that figuring things out is needed. Having good state of charge information available all the time will allow new drivers to develop experience and insight from their easy local driving that will make it possible for them to figure out which longer trips are practical. It's critical to widespread electric vehicle adoption that automakers get it right.

Understanding Electric Vehicle Charging

Trading a gas pump for a plug is a wonderful thing. It's far more convenient, takes less of your time, and saves you from breathing toxic fumes and smelling like gas for hours after fueling. Charging is a different experience than pumping gas and understanding the subtleties takes time. I've been driving electric for over two years and I'm still learning. Potential EV owners might want to get a head start on the learning curve, and maybe save a bunch of money as a result.

Mostly, I'll relate how charging works for a Nissan Leaf, a four-door, five-passenger hatchback with a range of about 100 miles, but I'll also mention other plug-in vehicles. The Leaf is intended for typical daily driving, which for 78% of drivers in the US means 40 miles or less per day. Occasional longer trips are possible and understanding charging will help you evaluate whether an EV will suit your driving needs.

Level 1 Charging

Level 1 Charging - Standard house outlet
Level 1 Charging - Standard House Outlet

Level 1 charging is the technical jargon for plugging your car into an ordinary household outlet. For a Leaf, this means about 4.5 miles of range per hour of charging, or about 22 hours for a full charge. Wow, does that sound terrible! But there's a problem with thinking this way: you'll rarely need to do a full charge from flat empty to full. If you drive 40 miles per day and charge overnight, you'll be back to full in 9 hours. When you're sleeping, it doesn't matter if it takes one hour or 9 hours to charge.

But what if you have to drive a lot one day, say 80 miles? Sure, it would take 18 hours to get a full charge, but with a 9-hour overnight charge, you'll be ready for your normal commute the next day. If you drive less than 40 miles per day or charge for more than 9 hours, you'll work back up to a full charge over the next few days.

If you need to drive 80 miles on consecutive days, you'll need an alternative. Maybe you'll drive your other car, that gas-burner you keep around for long trips, or if there's public EV charging in your area, you can charge away from home while you're parked to do your shopping or other errands.

Level 1 charging at work could also be a supplement for people driving over 40 miles per day, or even a substitute for those who can't charge at home (because they don't have a garage or fixed parking place, for example).

Since it's easy to get 40 miles of range charging overnight from 120V, Level 1 is perfectly suited for overnight charging of the Chevy Volt, a plug-in hybrid with a 40-mile all-electric range.

Although Level 1 charging is generally too slow for a road trip, it can be helpful as destination charging. Cathy and I drove 90 miles to San Juan Island, charged for a few days in a friend's garage when not cruising around the island, and left with a full charge. That was great, but I wouldn't want to have to wait for Level 1 charging in the middle of a travel segment.

Beyond range issues, Level 1 may not be suitable for primary charging in all cases. In extreme climates, more power may be required to maintain proper battery temperatures. In these cases, Level 2 charging may be more appropriate (see below).

DC Fast Charging

The Blink DC Fast Charge Station
Blink DC Fast Charge Station
photo by ECOtality

At the other end of the spectrum is DC Fast Charging, the fastest type of charging currently available. It provides up to 40 miles of range for every 10 minutes of charging. These stations are expensive (up to $100,000) and require more power than your house, so you'll never have one of these in your garage.

They are going to start appearing as public charging stations in the next year, beginning in the Leaf target areas. If there's one conveniently located near where you drive, you can get back up to 80% of a full charge while getting lunch or drinking a latte. Charging this fast makes it far more practical to drive beyond an EV's single-charge range in one day. It's still not going to make a one-day 800-mile drive practical, but a 200-mile drive with a couple of charging breaks can be quite doable.

Level 2 Charging

ChargePoint/Coulomb Level 2 Charging Station
ChargePoint/Coulomb Level 2 Charging Station

Between the cheap Level 1 and expensive DC Fast Charging stations sits Level 2 charging. Level 2 supplies 240V, like what an electric dryer or oven uses. It goes through a box and a cord that improves safety by waiting to send power to the plug until it's plugged into an EV. Level 2 allows for a wide range of charging speeds, all the way up to 19.2 kilowatts (kW), or about 70 miles of range per hour of charging.

However, the charging stations being put in with federal grant money don't support the full range of Level 2 charging and max out at 6.6 kW or around 26 miles of range per hour of charging.

Both Level 1 and Level 2 charging stations simply deliver household electricity to the car. Electronics on board the car transform the wall power into the proper form to charge the battery. This bit of electronics built into the car also has a maximum power rating. The first model-year Leafs can only use 3.3 kW, about 12 miles of range per hour, or about 8 hours for a full charge from empty. The Chevy Volt's on-board charger is also limited to 3.3 kW, although its smaller battery pack gets full sooner.

Nissan recommends that you install a Level 2 charging station at home. That's a reasonable thing to do if you don't mind spending about $2,000, just consider it part of the cost of the car. Early buyers in the Leaf target markets may be able to get into The EV Project and get a free Level 2 charging station plus an allowance toward the install cost. Failing that, there's a 30% federal tax credit (up to $1,000) for installing EV charging, which can make it less expensive. Still, if you are planning to use your EV for a daily commute of 40 miles or less per day, you should at least consider using Level 1 charging at home. You can always add a Level 2 charging station later if you decide you need it.

There will soon be 20,000 public Level 2 charging stations (limited to 6.6 kW) installed mainly in the Leaf target areas. Even if you only have Level 1 charging in your garage, if you're in the early rollout areas, you should have access to convenient Level 2 charging available while your car is parked and you're doing something else. These charging stations will make it possible to drive 60 miles to a baseball game and pick up about 50 miles of range in 4 hours while you're having fun, thus easily driving over the single-charge range while always keeping a healthy reserve.

Charge Time and Battery Capacity

It's misleading that charging times are generally quoted as time for a full charge. While it does take about 22 hours (Level 1) or 8 hours (Level 2) to charge a Leaf from empty to full, you're not likely to do that often because  you will rarely arrive home with a fully depleted battery. It doesn't matter if you're driving a 40-mile Volt, a 100-mile Leaf or a 240-mile Tesla Roadster, if your commute is 40 miles, you'll only need about 9 hours (Level 1) or 3 hours (3.3 kW Level 2) to charge.

When we bought our Tesla Roadster, we got the high-power 16.8 kW Level 2 charging station, which can charge the car in 3.5 hours. After driving the car for a few months, I realized it's all but pointless to have such a big charging station in our garage. It's rare that I drive over 40 miles in a day. The 16.8 kW charging station can restore 40 miles in under 40 minutes. I want that charging speed when I'm making a long trip, not when I'm sleeping at home. In fact, I manually drop the power I pull from the charging station to about 7.5 kW because it's a little nicer to our electrical panel and the grid, and my typical overnight charge is still under 2 hours. Ignoring the fact that Tesla is still using the now-incompatible proprietary charging plug they picked before there was a chosen standard, most people buying a Tesla Roadster today would be well-served to buy a 6.6 kW charging station for home.

3 Roadsters Sharing the Charging Station at Burgerville
3 Roadsters Sharing the Charging Station at Burgerville

Level 2 Charging, Road Trips, and Charging Speed

Already, Ford has announced that the upcoming electric Ford Focus will support charging at 6.6 kW, and is making fun of the Leaf's 3.3 kW Level 2 charging limit. By the time Ford actually starts delivering the electric Focus, Nissan may have already upgraded the Leaf to 6.6 kW charging. I don't think it will be long before mainstream EVs are capable of even faster charging. The Tesla Roadster can charge at 16.8 kW, which combined with a larger battery pack makes 400-mile drives possible even without DC Fast Charging. Given that Level 2 charging costs 1/10 of what a DC Fast Charger does, I can imagine a lot of driving being supported by full Level 2 charging stations in areas that can't justify the investment in DC Fast Charging.

Personally, I'm disappointed we're spending so much money installing these 6.6 kW public charging stations rather than full-speed Level 2 chargers when most of the expense is usually just running the wires and buying the fancy box. A typical commercial Level 2 install runs around $10,000 for a charging station that's connected to a network and capable of billing the user. Cranking those charging stations up to the 19.2 kW limit would add a small incremental cost, perhaps 10%, and would allow for much faster charging. If you're a business owner installing a charging station and have to dig a trench and/or run conduit, even if it's just a for 6.6 kW unit, I strongly recommend planning for running 100A wire later without having to retrench or replace conduit so that upgrading to a 19.2 kW charging station will be much less expensive.

2008 Tesla Roadster Converted to J1772 Charging

Cathy and I, with help from Dave Denhart and many others in the Tesla and broader EV communities, have converted our 2008 Roadster and Tesla High Power Wall Connector to use the new industry standard J1772 inlet and plug. This will allow us to charge without an adapter at the tens of thousands of Level 2 charging stations that will be installed in the US by the end of 2011.

j1772-charging-coulomb.jpgWhat we have is functional and completely reversible, but not ideal; we view this as a version 0.9 conversion. As there are very few J1772 charging stations currently installed, and the numbers probably won't take off until late spring or early summer, we have time to develop a better solution before it actually becomes compelling for Tesla owners to convert in significant numbers. I'm sure Tesla Motors could do a much better job of creating an integrated solution and I would prefer that to having the owner community develop a conversion solution.

We've hear rumors that Tesla is developing an adapter, but are still waiting for official word on what, if any, J1772 solution they will provide. While an adapter would give us a way to charge, we have heard from many owners who would prefer to convert their vehicles and charging equipment to the industry standard rather than leave an expensive adapter vulnerable to theft while charging.

Our effort started last summer when Cathy and I began working with Dave to figure out what it would take to build an adapter that would let a Tesla Roadster charge from the Level 2 J1772 charging stations. We discovered that SAE adopted Tesla's extension to the older J1772 communications standard, so a simple pass-through connector that converts Tesla's charge inlet to the J1772 inlet will allow charging to occur, although there is an issue, which is explained below.

Once we understood the protocol, Cathy and I built and tested a pass-through adapter. When I let the Tesla owner community know about our adapter in mid-September, I wasn't surprised to hear that lots of owners were thinking about those thousands of chargers, but I was surprised how nearly all who expressed an opinion agreed with us that the right way to do this was just to convert the Roadster to use the J1772 inlet. From what I'm hearing from new and prospective owners, it seems to me that many potential Roadster customers are put off by the Tesla plug and this is probably already becoming a barrier to sales.

In the absence of any word from Tesla Motors about a J1772 upgrade path, we've been slowly working toward doing a conversion ourselves. A few weeks ago, we finally obtained an ITT Canon 75A UL-approved inlet and plug pair from Clipper Creek. The plug cord is intended as a replacement cable for Clipper Creek's model CS-100, and carries the same power and signal wires as the TS-70 aka Tesla's High Power Wall Connector (HPWC, formerly the HPC). Clipper Creek also sells a holster for the J1772 plug that can be used to replace the holster for the Tesla plug.

With the necessary hardware in hand, we starting tackling the engineering challenges in getting the inlet mounted inside the Roadster's charge port: there's limited space to work with and the Roadster wasn't designed with the shape of the J1772 plug in mind, so getting the plug and cord to clear the body is tricky. It took a bunch of measuring, brainstorming, numerous experiments, a couple of laser-cut bracket prototypes, some Dremel work on the inlet cup, and then an adapter designed in CAD and printed on a 3D printer to get something functional.

This is what the back of the upgraded inlet port looks like. The blue piece is the mounting plate Cathy designed in CAD and we fabricated on a RepRap 3D printer at Metrix Create:Space.

inlet-adapter-plate.jpgHere's the work in progress just before installing the J1772 inlet and putting it all back together:

ready-to-assemble.jpgHere's the inlet mounted in the Roadster's charge port:

inlet-in-chargeport.jpgThe ITT Canon cord plugged into the Roadster's charge port:

plugged-in.jpg
Charging from our HPWC, now converted to J1772.

j1772-charging-home.jpgThe top of the inlet tilts back to angle the J1772 cord up. This works pretty well for the ITT Canon cord with enough clearance at the top of the port that it's easy to slide the plug in and engage the lock, easier than plugging in the Tesla connector in fact. The rubber strain relief on the cord barely rests on the body, plus our Roadster has the paint guard protection there, so I'm not worried about that minor contact damaging the paint.

itt-canon-cable.jpgIt's not quite as nice with the plug and cord used by the ChargePoint Coulomb chargers, but I think it's OK for use on the occasional road trip.

coulomb-cord.jpgIn addition to the cable clearance issue, there's another concern with our v0.9 conversion strategy that has to do with the largest difference between the Tesla and J1772 communication protocols.

The Tesla plug uses four contacts: two for power, one for ground and one for the pilot signal. The pilot signal is a low-voltage communications protocol that allows the charging equipment to tell the car the maximum amperage supported and allows the car to ask for the power to be turned on and off. The pilot signal is not connected to the car until the plug is connected and the locking switch is engaged. This switch plays a second role: if the driver tries to remove the plug in the middle of a charge, sliding the switch back interrupts the pilot signal which tells the car to stop charging. This happens very quickly so that the driver cannot get the plug untwisted and removed to break the electrical contacts while current is still flowing. It's important to prevent this because doing so can cause arcing, which would damage the contacts.

Instead of interrupting the pilot signal, J1772 uses a fifth wire for this purpose. Like the Tesla plug, the locking mechanism on the J1772 plug makes the proximity connection, so that when the driver wants to remove the plug and slides the lock it interrupts the proximity connection, thus telling a J1772 car to stop charging immediately (within a tenth of a second). Unfortunately, the locking switch on the J1772 plug doesn't interrupt the pilot signal.

With our v0.9 conversion (or a simple pass-through adapter), the driver can unlock the J1772 plug without the car knowing, and then pull the plug while power is flowing. Cathy and I need to make sure we don't do that. To solve this issue, we need to design a circuit that watches the proximity pin and interrupts the pilot signal when the J1772 plug is unlocked. I don't expect this to be difficult, but we haven't done it yet.

We have already made some improvements in the design. This is version 3 of Cathy's inlet mounting plate design, which we plan to print for our next revision:

bracket-front-v3.jpgIn addition to the improved mounting plate, our next steps are:

1) Hope that Tesla Motors provides an official conversion solution before it matters to most owners, thus saving us the remaining steps.

2) Design a circuit to monitor the proximity pin and disconnect the pilot signal when the J1772 plug is unlocked.

3) Test with other J1772 plugs and possibly work on a better solution for cable clearance over the body panel.

4) The 2010 and later Roadsters have the inlet cable assembly connecting to the PEM in a different location. There may also be other differences. We haven't looked into it yet and don't know if it will be more or less difficult to convert than the 2008 Roadsters.

5) Before recommending an unofficial conversion to other owners, we'll need to find out how this will impact our warranty. Tesla Motors has been cooperative with our efforts: they sold our group an inlet cable assembly so that we could do the conversion reversibly. We hope they will continue to be supportive rather than forcing us to wait until our warranties expire before being able to effortlessly access standard J1772 public charging stations.

An End to the Dark Ages of EV Charging

I had the opportunity to test out another ChargePoint charging station today. I was more prepared than I was the first time, so I got to try out the whole experience. I'm so pleased to see the future of electric vehicle charging. I'm not going to miss charging at RV parks at all.

This time, I had my access card activated and attached to my ChargePoint account. The easiest way to do this is to go to www.mychargepoint.net, sign up for an account and order a card. It's best to do this well in advance of wanting to charge. (Other charging station companies may offer similar functionality, but so far I've only been able to try out ChargePoint chargers installed by Charge Northwest and EV Support.)

I also downloaded the ChargePoint App to my iPhone and logged into my account.

Step one in the charging process is to locate a charging station. This can be done with the iPhone app or through the ChargePoint Find Stations web page. Not only can you find stations, you can check to see if they are functioning and available.

When I arrived at the charging station, I removed the J1772 cord from the station by sliding the silver button back to release the catch.

charge_cord.jpg

Next I plugged the cord into the car. My car requires a plug adapter, which doesn't yet exist, so Cathy and I hacked one together. Modern EVs will just have the right receptacle on the car, so you won't have to fool around with the ludicrous cable adapter shown here.

ready_to_charge.jpg
(photo courtesy of Michelle Billmaier)


To start the charging session, the user either places the ChargePoint card against the labeled spot on the charger (as shown above), or taps the pin for that station on the iPhone and then taps the start button. Theoretically, you don't even need to carry the ChargePoint access card, but it seems like a good idea just in case you can't get cell reception.

start_session.jpg

After starting the session, refreshing the screen will show the pin has changed colors from green to blue so that other EV drivers can tell that it's in use. Tapping on the pin will show that the start button has changed to a stop button. (Tapping the yellow button will show driving directions to the charging station.)

station_in_use.jpg
Checking the car's info screen shows that the charge is underway.

touchscreen.jpg
In the old days, when we took an electric vehicle on a road trip, we had to charge from outlets at RV parks and were confronted with an unpleasant problem...

Once you get the charge started, it's pretty boring: the car charges while you watch. You'd like to leave the car and go do something more interesting than watch it charge, but if you do that you risk having the charge stop early (like 5 minutes after you walk away) because of some problem. Maybe the breaker popped, or something interrupted the power briefly, any number of things. When you come back, perhaps hours later, you're not happy to find the car is still in the same state of charge as when you left, so now you have to do it again, and this time you're going to babysit it the whole time.

This is where using networked chargers designed for this purpose really shines.

If you're charging from a ChargePoint charger, you can check your charge session's status either from the iPhone app, or through a web browser (perhaps at a cafe, or in your "kabin" room).

session_screen.jpg
Wait though, it gets even better.

Suppose the more interesting thing you want to do is sleep, because you've been driving all day. It's not very convenient to check the session status every few minutes while you're trying to sleep. Even if you're eating dinner or surfing the web, you don't really want to constantly check your charge session. (See how quickly we get spoiled? Previously, there was no way to check the charging without being at the car, and yet now we don't want to have to bother with refreshing the screen on our iPhone.)

You can configure your ChargePoint account so that you get a text message or email for any or all of four events: charge completed, charger unplugged, ground fault error, or over current error.

To test this, I unplugged the cable from the car while it was charging. Shortly after that, I got a text message:

text_message.jpg
The only thing cooler than getting that message is knowing that not getting that message means your charge is still running.

And so we see the start of a new era and the end of the dark ages of EV charging.

J1772 Charging for the Tesla Roadster

We are about to see a mass deployment of public level 2 SAE J1772 charging stations, over 14,000 from The EV Project alone. This compares to fewer than 100 public Tesla charging stations (240V/70A High Power Connectors, aka HPCs). Over the next 12 months, I expect that the availability of level 2 J1772 chargers will totally overwhelm all other charger types.

While most of these 240V chargers will be limited to 30A or 32A, J1772 chargers capable of supplying 240V/70A are available from Clipper Creek with many other vendors also working on charging stations.

Teaming up with a number of other Tesla owners and members of the broader EV community, Cathy and I have been looking into what would be required to bring J1772 charging support to the Roadster community.

The good news is that Tesla and J1772 use the same communications protocol to establish the connection and start/stop charging. This didn't happen by accident. Tesla Motors was involved early on in the development of the J1772 spec. But the Roadster was designed before the new J1772 committee even got going, so the Tesla charging protocol was designed based on the old J1772 specification which used the Avcon connectors and limited charging to 40 amps. Tesla extended this protocol up to 70 amps, and successfully lobbied the J1772 committee to adopt this extension. Cathy and I have confirmed that the SAE J1772 JAN2010 spec exactly matches the amp limit waveforms produced by the Tesla HPC at all amperage limits from 12A to 70A.

So, the Tesla Roadster uses the same communications protocol as J1772. (Except for the button on the HPC that can be used to start charging; I don't know how that works.) The only barrier to charging a Roadster from a J1772 station is the Tesla plug. We confirmed this by building a proof-of-concept adapter and using it to charge our Roadster at a Level 2 J1772 charging station in Olympia, WA, last Friday (Sept. 10, 2010).

J1772-charging.jpg

J1772-touchscreen.jpg
We'd like to thank Dave Denhart, Rich Kaethler, Chad Schwitters, Martin Eberhard, and Dave Kois for helping us with this proof-of-concept project. Thanks also to Jim Blaisdell of Charge Northwest for helping us find a level 2 charging station and getting us a ChargePoint Network card overnight. Our crude adapter is not a robust solution. As you can see it's quite bulky (since we didn't want to cut the cable to a working Tesla plug) and isn't watertight enough for general outdoor use.

When the Roadster was entering production, there was no standard J1772 plug, so Tesla had to design their own. That was a necessary step, but now that the final standard uses a different plug, I think we need to find a real solution to this incompatibility. As I see it, there are at least 4 possible solutions:

  1. An upgrade to switch both the Roadster and HPC to use J1772 connectors.
  2. A compact adapter that converts J1772 to the Tesla connector.
  3. A new pigtail for Tesla's universal mobile connector (UMC).
  4. A new pigtail that requires purchasing a re-engineered UMC.
A new pig tail for the current UMC (solution 3) isn't very appealing as the UMC is limited to 40A, cutting us off from any 70A J1772 chargers, while also requiring us to stuff a large, heavy, awkward cable into our trunks just to charge at a station that is guaranteed to have a cable that will reach our charge port. It's also not nice for those of us who have already invested in a different mobile connector, like the original MC240 or the RFMC. Solution 4 is even worse than 3 as it shares all of the problems and it would require everyone to purchase a new mobile connector.

A compact adapter (solution 2) is better in that it could support the full 70A charging and also be quite compact, little more than a J1772 receptacle and a Tesla plug. It will still be quite expensive as it requires a Tesla plug. My guess is that it would cost at least $1,200 retail, based on what Tesla charges for the MC240 and UMC. It also has the downside of being an obvious target for malicious theft when the car is left charging unattended. Nissan Leaf owners won't have to leave an expensive, unsecured device dangling from their cars when charging, why should we?

Full conversion to J1772 (solution 1) sounds radical until you see a J1772 receptacle. It's very close to the size and shape of the inlet in the Tesla charge port. Once I saw that, it required zero imagination to picture a Tesla Roadster with a J1772 receptacle in place of the proprietary Tesla charge inlet.

The downside of solution 1 is that it would also require replacing the plug on our home chargers (HPC or mobile connector). This could be done by either replacing the cable, or by using the old Tesla inlet and a J1772 cable to make a Tesla-to-J1772 converter.

The retail cost of an ITT Canon UL-certified J1772 receptacle and cable pair rated for 75A is $825 from Current EV Tech. I don't know of anyone else selling these newly-available connectors, but I do expect it to be a competitive market much larger than just Roadster owners. Even adding in reasonable labor costs, it seems to me that converting a Roadster and HPC should be near or below the cost of a J1772-to-Tesla adapter.

I have been told that Tesla Motors is investigating ways to bring J1772 support to the Roadster which may include either a compact stand alone adapter (option 2) or a J1772 pig tail for the Tesla universal mobile connector (I'm not sure if this is option 3 or 4). They are early in the process and not promising anything at this point. From what I have heard, Tesla Motors is not interested in providing a full J1772 conversion (option 1) and hasn't even committed to supporting J1772 on the Model S.

It's possible the full J1772 conversion could be done even if Tesla Motors doesn't give us an official way to do it. I expect our group will continue exploring ideas in case we have to tackle the problem ourselves.

We are several months away from having a significant number of Level 2 J1772 chargers installed in metro areas targeted by The EV Project, and even further away in other areas of the US. There's plenty of time left for both Tesla Motors and the owner community to explore possible solutions, but I believe this will soon be an important issue for every Roadster owner who wants to be able to take advantage of the soon-to-be pervasive J1772 charging infrastructure to conveniently drive beyond the Roadster's single charge range.


  1 2 3 4  

Find recent content on the main index or look in the archives to find all content.