Results matching “PIR”

Steve Jobs - 30 Years of Life-Changing Influence

In 1983, I was a math grad student at the University of Utah. I was a student representative on an administrative committee and heard about a top secret Apple demo where they had been shown a new computer that "looked like it was something out of Star Wars." The next year, every department at the university got two Macintosh computers with 128 KB of RAM, a 400 KB floppy drive, an 8 MHz CPU, and a 512x342 black and white screen.

jobs1984.jpg
This was cutting edge, state-of-the art computing, something that, back then, looked like it was straight out of science fiction, and one of them landed in the grad student lounge where we could figure out what it meant.

I'd been programming since junior high, first on a programmable HP calculator, then in BASIC on an Apple ][ in high school. I only took one programming class in college, "Introduction to Programming in Pascal" my freshman year. I narrowly missed having to use punch cards for that class because I had a computer account on the math department mainframe. Over the years, I did a fair amount of programming, it was a useful tool for solving math problems, which I got plenty of as a dual major in math and physics. All of that programming was console stuff: log in via a dumb terminal, edit program files in a very nerdy text editor, compile and run to get results back as lines of text. You could make the output pretty by carefully using spaces to make columns line up, maybe even draw awesome graphs by printing out spaces and x's in just the right spots.

The Macintosh was a completely different beast. It had a graphical interface that used images to convey information. It was easier to use and you could do things that were unimaginable on the terminal to the main frame. In 1985, I bought a Mac 512, the next generation with 4 times as much memory. Later, I took a year off from grad school to work for the University of Maryland, European division, teaching math and computer science to American military personnel on the air force base in Inçirlik, Turkey. I bought a custom-fit bag for my Mac 512 and hauled it across Europe to Turkey, bought copies of the Inside Macintosh programming reference books and taught myself C. I hacked the startup screen that said "Welcome to Macintosh" to say "Have Mac, Will Travel" instead.

I nearly got trapped in Turkey because of the Mac. Turkey carefully controlled technology imports, so if you brought a computer into the country, it got marked in your passport. When you left, you had to take the computer with you or pay an astronomical tax, like three times the cost of the computer, a fortune to me. I took a brief trip to Germany to deal with an eye issue, and took the Mac with me (of course), but because it was a weird military flight, the Mac didn't get marked as leaving. So, when I came back I got a second Mac added to my passport! The customs guy who was trying to explain the mess I was in through an insurmountable language barrier finally made a gesture indicating handcuffs, me, and Turkish prison. That got my full attention. Fortunately, I was able to resolve the issue with the head customs guy over tea arranged by a fortunate contact, a Turk who taught Turkish classes on base.

After that year, I got back to school, but was stalled choosing a thesis topic for the PhD program, at least partly because I was spending all of my spare time programming the Mac. I wrote a program that let you type in an equation and it would graph it on the screen. It was a pretty basic idea, but there wasn't a Mac program that would do that, at least not one that didn't cost a fortune. A publishing company licensed it to include with the teacher's edition of a math text book and I got my first paycheck for writing software. That summer, I got a job with a small local Mac software company. It was almost a real job, paying real money and I had fun doing it. That was a big revelation: people would pay me to do something I enjoyed. Suddenly, getting a PhD in math so I could maybe get a job teaching math wasn't as interesting.

That summer, 1987, I applied for jobs at companies I admired, Quark for their awesome desktop publishing app, and Microsoft for Word. I got the job at Microsoft working on the Mac version of Word.

By then Steve Jobs had been ousted from Apple. The momentum of Steve's vision carried the company for a few years, but eventually there was a series of uninspired CEOs overseeing the production of a complex array of boring beige boxes while the operating system made slow progress moving forward.

Macintosh_Performa_6300.jpgBy the mid-1990s, Apple was struggling while Microsoft was rapidly growing. With broad success on Windows, Microsoft's interest in Mac products waned. It became increasingly difficult to work on Mac products without spending incredible amounts of energy advocating for something better than getting the Windows version to run on the Mac. I stuck with it for several years after it became the opposite of fun, partly for fear that if the Mac version of the Office apps died, so would Apple.

During those years, I met Cathy, who shares many of my interests and is arguably even nerdier than I am. The attraction was (and is) strong enough that we got married even though she is an unwavering Windows user.

In 1996, Steve came back to Apple and things started to look up in the world of Mac.

In early 1998, I'd had more than enough of working at Microsoft, trying to produce a great Mac product and getting more grief and frustration than support, so I left, and Cathy followed shortly thereafter.

It took a few years, but Steve got Apple back on track, mostly by doing things that seemed crazy to me. When Steve announced the iMac in 1998, I declared it was one past the last Mac I would ever buy.* A cute-looking computer with no floppy drive, no serial port and no standard Apple mouse and keyboard connector? Instead, it had a USB connector, this crazy new thing that no other computer company was using. Insane!

bondi_imac.jpgIn 1999, I went to the Worldwide Developer Conference. It had been a few years since I'd been and I'd lost track of the ever-changing strategy to modernize the Macintosh operating system. When Steve rejoined Apple, it was part of the deal where Apple bought what remained of NeXT. I'd seen a NeXT machine in 1998 and thought it looked beautiful and had an intriguing development environment, but the hardware was too expensive and no one was buying it. Come to find out, the latest OS strategy at Apple was to bring NeXT into the Mac, or perhaps more accurately to paint Mac of top of NeXT. They were far enough along that I could tell it was going to be cool: the elegance of the Mac user interface built on a unix-based foundation: beauty and nerdy all at once. With Apple's stock price in the toilet, I bought a modest chunk of stock at $14 per share just in case I was right and they had something good going on. (I should have bet much more. I eventually sold it the second time it got up to $200, after which it shot up over $300.)

In 2001, Steve announced the iPod, this crazy portable music player, sort of like a Sony Walkman, but with a hard drive. Lots of other companies were making things like this, and it was turning into a commodity market. The iPod looked cool, but why would I buy one? What was Steve thinking? And eye-pod? What kind of a name is that? The whole thing was embarrassing. Cathy prompted us to finally buy one, and we liked it. So did a number of other people.

In 2007, Steve introduced the first iPhone. I understood this one right away, and Cathy waited in line for me so I could buy one on the first day they were available. Steve Ballmer hilariously said, "There's no chance that the iPhone is going to get any significant market share. No chance."

Now I carry a computer in my pocket with a 1 GHz processor, 512 MB of RAM, 32 GB of storage, and a 640x960 full color screen. It's connected to the Internet from nearly everywhere on the planet within 20 miles of a traffic light. It also happens to make phone calls.

iPhone4s_3up.jpgI'm now back where I was in grad school, spending all of my spare time programming on projects I find interesting, mostly on the iPhone these days. Occasionally, I get paid for my programming work but most of the time I just do it to make doing some task easier or more enjoyable.

It took the work of tens of thousands, if not millions, of people to make technology advance this far in 30 years, with a lot of it fueled by the competition between Apple and Microsoft. Perhaps Steve didn't do much of the technical work, but he saw what could be done years ahead of everyone else and pushed things in the right direction at Apple, NeXT and Pixar. It's been a blast riding the wave of advancements he inspired and worked so hard to realize. I never met him in person, but I saw him speak many times at WWDC and the Macworld Expo over the years. It's been an honor to live through the Steve Jobs age. I'm sad to see it over way too soon, although I'm sure his influence and vision will carry forward for many more years.


* That's a very nerdy joke making a play on the Hungarian naming convention, a powerful programming technique invented by Charles Simonyi, with whom I had the privilege of working on Mac Word during my first several years at Microsoft.


2008 Tesla Roadster Converted to J1772 Charging

Cathy and I, with help from Dave Denhart and many others in the Tesla and broader EV communities, have converted our 2008 Roadster and Tesla High Power Wall Connector to use the new industry standard J1772 inlet and plug. This will allow us to charge without an adapter at the tens of thousands of Level 2 charging stations that will be installed in the US by the end of 2011.

j1772-charging-coulomb.jpgWhat we have is functional and completely reversible, but not ideal; we view this as a version 0.9 conversion. As there are very few J1772 charging stations currently installed, and the numbers probably won't take off until late spring or early summer, we have time to develop a better solution before it actually becomes compelling for Tesla owners to convert in significant numbers. I'm sure Tesla Motors could do a much better job of creating an integrated solution and I would prefer that to having the owner community develop a conversion solution.

We've hear rumors that Tesla is developing an adapter, but are still waiting for official word on what, if any, J1772 solution they will provide. While an adapter would give us a way to charge, we have heard from many owners who would prefer to convert their vehicles and charging equipment to the industry standard rather than leave an expensive adapter vulnerable to theft while charging.

Our effort started last summer when Cathy and I began working with Dave to figure out what it would take to build an adapter that would let a Tesla Roadster charge from the Level 2 J1772 charging stations. We discovered that SAE adopted Tesla's extension to the older J1772 communications standard, so a simple pass-through connector that converts Tesla's charge inlet to the J1772 inlet will allow charging to occur, although there is an issue, which is explained below.

Once we understood the protocol, Cathy and I built and tested a pass-through adapter. When I let the Tesla owner community know about our adapter in mid-September, I wasn't surprised to hear that lots of owners were thinking about those thousands of chargers, but I was surprised how nearly all who expressed an opinion agreed with us that the right way to do this was just to convert the Roadster to use the J1772 inlet. From what I'm hearing from new and prospective owners, it seems to me that many potential Roadster customers are put off by the Tesla plug and this is probably already becoming a barrier to sales.

In the absence of any word from Tesla Motors about a J1772 upgrade path, we've been slowly working toward doing a conversion ourselves. A few weeks ago, we finally obtained an ITT Canon 75A UL-approved inlet and plug pair from Clipper Creek. The plug cord is intended as a replacement cable for Clipper Creek's model CS-100, and carries the same power and signal wires as the TS-70 aka Tesla's High Power Wall Connector (HPWC, formerly the HPC). Clipper Creek also sells a holster for the J1772 plug that can be used to replace the holster for the Tesla plug.

With the necessary hardware in hand, we starting tackling the engineering challenges in getting the inlet mounted inside the Roadster's charge port: there's limited space to work with and the Roadster wasn't designed with the shape of the J1772 plug in mind, so getting the plug and cord to clear the body is tricky. It took a bunch of measuring, brainstorming, numerous experiments, a couple of laser-cut bracket prototypes, some Dremel work on the inlet cup, and then an adapter designed in CAD and printed on a 3D printer to get something functional.

This is what the back of the upgraded inlet port looks like. The blue piece is the mounting plate Cathy designed in CAD and we fabricated on a RepRap 3D printer at Metrix Create:Space.

inlet-adapter-plate.jpgHere's the work in progress just before installing the J1772 inlet and putting it all back together:

ready-to-assemble.jpgHere's the inlet mounted in the Roadster's charge port:

inlet-in-chargeport.jpgThe ITT Canon cord plugged into the Roadster's charge port:

plugged-in.jpg
Charging from our HPWC, now converted to J1772.

j1772-charging-home.jpgThe top of the inlet tilts back to angle the J1772 cord up. This works pretty well for the ITT Canon cord with enough clearance at the top of the port that it's easy to slide the plug in and engage the lock, easier than plugging in the Tesla connector in fact. The rubber strain relief on the cord barely rests on the body, plus our Roadster has the paint guard protection there, so I'm not worried about that minor contact damaging the paint.

itt-canon-cable.jpgIt's not quite as nice with the plug and cord used by the ChargePoint Coulomb chargers, but I think it's OK for use on the occasional road trip.

coulomb-cord.jpgIn addition to the cable clearance issue, there's another concern with our v0.9 conversion strategy that has to do with the largest difference between the Tesla and J1772 communication protocols.

The Tesla plug uses four contacts: two for power, one for ground and one for the pilot signal. The pilot signal is a low-voltage communications protocol that allows the charging equipment to tell the car the maximum amperage supported and allows the car to ask for the power to be turned on and off. The pilot signal is not connected to the car until the plug is connected and the locking switch is engaged. This switch plays a second role: if the driver tries to remove the plug in the middle of a charge, sliding the switch back interrupts the pilot signal which tells the car to stop charging. This happens very quickly so that the driver cannot get the plug untwisted and removed to break the electrical contacts while current is still flowing. It's important to prevent this because doing so can cause arcing, which would damage the contacts.

Instead of interrupting the pilot signal, J1772 uses a fifth wire for this purpose. Like the Tesla plug, the locking mechanism on the J1772 plug makes the proximity connection, so that when the driver wants to remove the plug and slides the lock it interrupts the proximity connection, thus telling a J1772 car to stop charging immediately (within a tenth of a second). Unfortunately, the locking switch on the J1772 plug doesn't interrupt the pilot signal.

With our v0.9 conversion (or a simple pass-through adapter), the driver can unlock the J1772 plug without the car knowing, and then pull the plug while power is flowing. Cathy and I need to make sure we don't do that. To solve this issue, we need to design a circuit that watches the proximity pin and interrupts the pilot signal when the J1772 plug is unlocked. I don't expect this to be difficult, but we haven't done it yet.

We have already made some improvements in the design. This is version 3 of Cathy's inlet mounting plate design, which we plan to print for our next revision:

bracket-front-v3.jpgIn addition to the improved mounting plate, our next steps are:

1) Hope that Tesla Motors provides an official conversion solution before it matters to most owners, thus saving us the remaining steps.

2) Design a circuit to monitor the proximity pin and disconnect the pilot signal when the J1772 plug is unlocked.

3) Test with other J1772 plugs and possibly work on a better solution for cable clearance over the body panel.

4) The 2010 and later Roadsters have the inlet cable assembly connecting to the PEM in a different location. There may also be other differences. We haven't looked into it yet and don't know if it will be more or less difficult to convert than the 2008 Roadsters.

5) Before recommending an unofficial conversion to other owners, we'll need to find out how this will impact our warranty. Tesla Motors has been cooperative with our efforts: they sold our group an inlet cable assembly so that we could do the conversion reversibly. We hope they will continue to be supportive rather than forcing us to wait until our warranties expire before being able to effortlessly access standard J1772 public charging stations.

Drag Racing a 2008 Tesla Roadster

I joined four other Seattle-area Tesla owners in driving down to Portland for the NEDRA Wayland Invitational IV electric vehicle drag racing event at Portland International Raceways on July 24th and 25th. My friend Richard wasn't due to receive his 2010 Roadster for another week or two, so he and I shared the driving and the racing in my car.

None of us had any previous drag racing experience, we were just doing it to promote electric vehicles by showing a bunch of people that EVs can be as fun and powerful as gas-burners without sending a bunch of our our dollars overseas or dumping CO2 into the atmosphere.

Over the two days, thanks to Northwest Handling Systems, John Wayland, James Morrison, and several others behind the scenes, who arranged charging both on and off the track, I was able to post the best time in a 2008 Roadster: a 12.982 second 1/4 mile ET at 103.48 mph. The best Roadster time was set by Scotty Pollacheck (the professional driver/rider of the famous Killacycle) in James Morrison's freshly-delivered 2010 Roadster sport: 12.643 second 1/4 mile ET at 102.89 mph.

At the Wayland Invitational, I got to race head-to-head against other 2008 Roadsters using the same driving technique and as well as controlling other parameters. Having Richard racing in my car allowed me to compare how weight changed times with other parameters held constant. Also got to race against the famous White Zombie. We had two nights there, one with charging at the track and one without. My YouTube channel has some videos from that weekend.

Two weeks later, the same group of owners spent another evening at Pacific Raceways in Kent, WA this time with Richard driving his shiny new 2010 Roadster. I was able to do some more experiments there.

Based on what I've seen so far, it breaks down like this:

13.40 seconds: 2008 Roadster, medium weight driver with a cool battery pack, single foot start, traction control on, racing in warm weather at sea level.

0.32 seconds - having a warm battery pack from a recent 240V/40A charge
0.10 seconds - traction control off
0.07 seconds - lose 20 to 30 lbs of driver weight
0.07 seconds - two-footed start (indirect estimate)

I didn't compare single foot launch and two-foot launch with all other parameters controlled. From otherwise similar runs in Portland and Kent, I saw a difference of about 0.07 seconds, but that was different tracks, different charge profiles and different ambient temperatures. The other delta were pretty well controlled.

One owner in Portland increased tire pressure to 40 psi all around trying to shave off a few hundredths to break into the high 12's and didn't get any benefit.

There's also some variation from car to car depending on how well the motor was wound, etc. While there was about 0.07 seconds difference between Richard and me in my car (presumably due to weight), there was a much smaller difference between Scott in his car and me in mine (0.04 seconds) even though I would guess the weight difference to be similar.

I didn't sense the stock tires spinning even with a two-foot launch and TC off, so I don't see how sticky tires would help on a 2008 Roadster. I have confirmation from Tesla to not expect the 2008 Roadster to spin the stock tires with TC off when on dry pavement and driving in a straight line. (That said, I am not recommending turning off TC in any other circumstance.)

I didn't get a chance to try all of the optimizations on the same run. It was only on the second day of the Wayland Invitational that I had a chance to charge up at the track and that was before I learned about the two-foot launch technique in detail, and also before I had the nerve to turn off traction control. So, I don't know what happens when you stack up all of the techniques together.

According to my data, getting a stock 2008 Roadster under 12.8 is going to take a trick I don't know about. Perhaps a driver under 100 lbs, or driving at higher altitude could do it. It might also help to fold back the side mirrors to reduce drag. It will be interesting to see what happens at the NEDRA nationals in Denver in September.

DEFCON 17 Report

DEFCON is an annual computer security conference, the inexpensive and unruly counterpart to the more expensive corporate Black Hat security conference. From computer security briefings to the toxic barbeque to lock picking contests to a 52-hour competition to turn the electric conference badge into something more by any available means, DEFCON has something for everyone.

My focus is generally attending the briefings on computer security, privacy and civil rights issues, but even that consists of five parallel tracks of concurrent talks, so I only get to see a fraction of what's being presented.

That said, here's my summary of what I learned this year.

Picking the Lock on Your Browser


I trust everyone knows that when you're entering sensitive personal information, like bank account and credit card numbers, into a web page you need to look for the little lock icon so that you know you aren't revealing your info to some malicious criminal. Technically speaking, the lock (along with the https:// in the address bar) guarantees that you are sending that info to the web site you intend (not some malicious forgery) and that the info is being sent in an encrypted form so that even if a criminal is recording all of the data as it is transmitted across the Internet, your private information can't be read.

For the lock to be effective, you need to make sure you entered the correct address into your browser. Getting you to enter an incorrect address is the basis of what is called "phishing." One example of phishing is sending fake email messages that look like they came from your bank, or eBay, or Amazon, etc., which encourage you to follow a link in that email. The link might look like a link to the proper institution, but the actual address is to another site. For example, you might be sent to http://ebay.criminalscammer.com/ which has no association with ebay.com and will instead steal your eBay credentials if you type them into their bogus site. The fake link can be very insidious where it uses some wacky foreign alphabet character that makes the link look like the right web site, something like bankøfamerica.com. You might notice the slash through the "o", but there are other character substitutions where there is no visible difference.

This brings us to the first two rules of Internet safety:

Rule 1: Don't trust a link that you get in email, no matter who it says it's from. Especially don't trust it if it takes you to a bank or commerce web site. Even links to non-commerce sites can be malicious, since there are flaws in browsers that allow a malicious web site to take over your computer, but that's a whole different topic. So, if your best friend in the whole world emails you a link to the funniest photo ever, and you just have to see it, be skeptical and consider verifying the source of the link before clicking it.

Rule 2: Whenever you are about to type anything into a web page that you wouldn't want posted on the bulletin board at the local prison, make sure the link starts with "https://" and that your browser is showing you the lock icon.

That's where we were until early 2008. As long as you always typed in your web addresses, or used bookmarks you created from web addresses you typed in, and you looked for the https:// and the little lock, you were safe.

Then last year, Dan Kaminsky found a problem, but first I have to explain another vulnerability.

There's a step in the web communication process that can be subverted. When you type https://www.yourbank.com/ into your address bar, your browser has to do something like looking up a phone number. Computers on the Internet aren't addressed by name, but instead by a number called an IP address. It's like when you place a phone call, you don't type in someone's name, you enter their phone number. There are special servers on the Internet, called DNS servers, that perform that lookup. So, when you type https://www.yourbank.com/ into the address bar, your computer connects to a DNS server and asks for the correct IP address. That process can be subverted. It's been known for a long time that it's easy to do this locally. So, if you're using the WiFi connection at your local coffee shop, some criminal might also be sipping coffee there and sending your computer fake DNS responses that will send you to their evil server instead of your bank's server.

Rule 3: Don't trust web pages when you're surfing from a public access point. This includes free WiFi at coffee shops and libraries, and also wired Internet connections at hotels, Internet cafes, etc.

That used to be a good rule, until Dan Kaminsky pointed out a problem in the DNS system that has been there for years. There was a flaw in the programming used by DNS servers that made it possible for the bad guys to attack the server and trick it into sending our false information. So, even if you typed in https://www.yourbank.com/, the real DNS server might send you a bogus response that would send your browser to a criminal web server. This is a very bad problem as nearly all of the millions of DNS servers out there were vulnerable. Dan worked closely with the folks who control the majority of the DNS servers to get the flaw fixed on as many servers as possible before announcing the problem to the world.

The careful reader might be thinking that even if someone fakes your DNS responses and sends you to the wrong site when you're trying to do your banking, the https:// and the little lock means that you are connected to the real bank site and your information is encrypted so it can't be read even if it's intercepted. That was true until...

Getting Valid Certificates for Fake Sites

This year at DEFCON, Dan Kaminsky announced another flaw in a major system behind the safe operation of the Internet: it's possible for the bad guys to trick browsers into thinking they have valid certificates for sites they don't own. Certificates are the mathemagical basis of how your browser's little lock icon determines that it's safe to enter and send your private information securely to the party you intend and no one else. The certificate does two things: it proves to your browser that the site it's talking to is the real site for the address in your address bar (which is why it's critical that you have the correct address in your address bar) and it gives your browser the means to establish a secure communication channel to that server which can't be read by anyone else even if they intercept all of your transmitted data. It is widely believed that this security cannot be broken even with a lifetime of effort by an army of supercomputers. And that's still the case, except: the bad guys can get real certificates that allow them to impersonate secure sites.

The trick is somewhat technical, but it is fixable. Hopefully, this flaw will be taken as seriously as the DNS issue was and the several contributing flaws will all get fixed soon. If you're not interested in the technical details of the flaw, you can skip the next paragraph.

When you apply for a certificate from one of the many certificate authorities, you submit a document that states what domain name you want secured. There are multiple formats for encoding this string, including preceding length byte and zero-byte terminated. If you combine both, evil ensues. For example, you can submit a form using the length-byte format for the domain [37]www.yourbank.com[0].criminalscammer.com where [37] represents the length byte covering the entire string and [0] represents a zero byte in the middle of the string. Some certificate authorities will parse this string, pay attention of the length byte, but recognize that the zero-byte isn't a valid character (the digit '0' is not represented by a zero-value byte in order to avoid confusion when using zero-byte terminated strings, see info on ASCII encoding) and parse the string as www.yourbank.com\x00.criminalscammer.com. Their computer decides this is a perfectly reasonable request and contacts the owner of the criminalscammer.com domain to make sure the request came from them. The criminal scammer validates the request and the certificate is granted. The problem comes when a browser gets a bogus DNS reply for www.yourbank.com which directs it to contact the evil server with the wacky certificate. When the browser encounters the zero-byte, it may interpret the wacky domain name differently than the certificate authority and treat that zero-byte as the end of the string and decide the certificate is for www.yourbank.com.

Once this is set up, the victim submits banking info to the evil server and now the bad guys can log into the user's bank account. That's a bad thing.

The good news is that for this to be a problem two things have to occur. First, the user has to get directed to a fake site through a bogus DNS reply, and second the browser has to have the flaw that allows it to see the phony certificate as valid for the legitimate site. Which brings us to:

Rule 4: There is no rule four, follow rules 1 through 3 to avoid getting sent to a counterfeit web site.

We hope that certificate authorities will stop granting these zero-byte certificate requests and browser vendors will fix their code that interprets these fraudulent certificates.

Colleges Throw Out Students' Internet Privacy, Expose to Fraud

Endgrain, an observant student at the University of Southern Maine noticed something odd when he entered a chat room after logging into the university's network: people in the chat room started addressing him by his full name. He did some sleuthing and found out how his university was broadcasting his full name to everyone on the Internet.

When a student at USM logs into the network for the first time, they have to enter their username and password. The network then remembers that machine (by its MAC address) and thereafter lets the user onto the network without entering credentials. It also assigns that student an fully Internet accessible IP address, and maps that IP address to a domain name that includes the student's first and last name. There are a number of problems with this scheme.

First, because the IP address is publically available on the Internet, with no intervening router or firewall, the student computers are open to direct outside attack from anywhere on the Internet.

Second, because the IP address has a full DNS name revealing the student's name, the student is fully exposed to all sorts of privacy attacks. Every web site they visit logs those visits, and hence logs the student's name. Likewise, Google searches are logged and thus a student's search history is exposed to the world. Many other Internet activities expose students to a loss of privacy.

USM isn't the only school doing this to students, at least the practice of assigning DNS names that include each student's full name. According to research done by Endgrain and Dan Kaminsky, some 60 universities are doing this.

Presumably, this destruction of student privacy is done to streamline RIAA lawsuits against students pirating music. With the DNS clearly revealing a student's name, university, and even approximate location on campus, the RIAA can serve up lawsuits without having to go through the bother of getting a court order to find out who is behind an IP address identified as illegally sharing music.

The worst part of this whole thing, at least as USM has implemented it, is that it actually hurts the ability of the RIAA to identify who's behind an IP address. Anyone on the university network can watch traffic and determine which MAC addresses belong to which students. It's then trivial for a malicious student to spoof another student's MAC address then do bad things masked by the DNS name pointing to an innocent student all without ever learning that student's network password. Because of this flaw in how USM allows unsecured logins by MAC address, any student who gets sued by the RIAA has an easy defense: it's wasn't me, someone must have spoofed my MAC address. Guilty students get an easy defense, and innocent students are left to defend themselves in court because of a flawed system.

Everyone loses here. Students lose their anonymity on the Internet and can be identified by anyone, with no need for having a good reason to identify a user or obtain a warrant or court order. The RIAA, and other intellectual property owners, can't actually use the DNS names to identify students since the system is so easy to subvert. Universities look like spineless dorks for outing their students and exposing them to computer attacks.

Students who go to universities that are doing this to their student body should be raising the alarm and forcing a change in policy. We don't want our universities to be teaching students that they have to abandon their first amendment rights for the illusion of corporate convenience.

Joe Nocera - Slime Bucket of Incorrect Facts

My thoughts on Joe Nocera's uninformed rant on Tesla Motors.

Disclaimer: My wife and I are a customers of Tesla Motors. You might think this means I want Tesla to succeed because they have a chunk of our money, but I think it's the other way around: Tesla has a chunk of our money because we believe in their vision and strategy for making it happen. We also own a RAV4-EV.

OK, enough about me. Let's get straight to Nocera's article and learn why Steve Jobs recently described him as "a slime bucket who gets most of his facts wrong."

[Elon Musk] is using [his] wealth to finance two quixotic efforts.

Don't mince words, tell us what you really think.

I'm no auto expert...

Well, at least we can agree on something!

Tesla expects to be delivering four cars a week soon, a number it eventually hopes to double.

Actually, they hope to get to about 35 a week within 6 to 12 months, but maybe math isn't his area of expertise, either.

By the end of 2010, Mr. Musk and his executive team expect to be manufacturing a five-seat, all-electric $60,000 sedan. This, however, will be a much more expensive and difficult task -- and many auto experts doubt that Tesla can pull it off.

What auto experts? Does he mean auto experts who make their living off of the big auto makers? Would they really be expected to say they think this tiny upstart company can easily do what the big guys have been whining can't be done for 10 years?

Among its flaws, the EV1 used a nickel metal hydride battery that couldn't get more than 75 miles before needing a charge.

Now he is getting the facts totally wrong. The first version of the EV1 used lead-acid batteries, 19th century technology, and had a range of 75 miles. The second generation EV1 used NMiH and had a range of over 100 miles.

"My daily commute was 37 miles one way," wrote a man named Michael Posner on a Web site called The Truth About Cars, who drove an EV1 for several weeks back in 1997. "Every trip was loaded with drama," he added. "If I went to lunch, I gave up a few precious miles. That could mean disaster." At General Motors, they took to calling this problem "range anxiety."

99% of all travel is less than 100 miles, so there's 1% of travel that couldn't be done in a second-generation EV1. This one guy tried to do his 74-mile commute in a first generation EV1 with a range of 75 miles. It didn't work out for him. Duh.

Is it any wonder the car didn't catch on?

Who says it didn't catch on? GM only leased 800 of them, but they never mention the waiting list of 4,000 more people who wanted to buy one. This happened with not only no promotion of the vehicles, but with ads clearly designed to dissuade potential customers from considering EVs. One can only guess what would have happened if the car companies actually promoted the strengths and benefits of EVs. When the big auto industry got the California Air Resources Board to eviscerate their Zero Emissions Vehicle mandate, they took back all of those leased cars from their passionate owners, despite offers of cash for the cars and organized public protests. Then they crushed the cars. If you haven't already seen Who Killed the Electric Car, I highly recommend it.

Jump ahead a decade. Oil is so expensive that everybody is thinking about alternatives to $4.50-a-gallon gasoline. At the same time, the technology that makes electric cars possible has greatly improved. The development of lithium ion batteries, in particular, was such a great leap forward that it has made it possible, with enough additional innovation by electric car companies, to produce vehicles that get more than 200 miles. Suddenly, an electric car seems viable.

Wow, that sounds cool.

And yet, and yet. Despite all this progress, we're not close to being ready to mass-produce an electric car. For starters, everyone trying to build an electric car is coming at it from different directions.

Lots of companies are trying to do something that's never been taken seriously, and they all have different approaches. That sounds like innovation. I'd be more worried if they were all doing the same thing.

For instance, while the Tesla has a 1,000-pound battery pack, consisting of over 6,800 cells (at an estimated cost of $30,000) ...

Whose estimate is the $30,000? If that's true, how could Tesla Motors be promising an EV for less than $30,000 by 2012? Maybe the estimate is wrong. Maybe the cost comes down with economies of scale.

...the new Aptera Typ-1 -- a Jetson-mobile if ever there was one -- uses a much smaller battery; its secret sauce is its aerodynamic shape, which greatly reduces drag.

Sure the Aptera has a smaller battery: it's not an electric vehicle, it's a gas/electric hybrid.

Bill Gross, the head of Idealab, which is behind Aptera, told me that he believes that when the car comes on the market late this year, it will sell for around $29,000 -- meaning of course that its business model is the opposite of Tesla's.

So Aptera is making a hybrid, hasn't passed crash testing, and is promising a car this year. That's why he's comparing them to Tesla, because they are where Tesla was two years ago, except they are trying to do something completely different.

Meanwhile, a third company, Phoenix Motorcars, is hoping to make traditional cars, like S.U.V.'s, that just happen to run on electricity.

Wow, that sounds crazy, sort of like the RAV4-EV and the Chevy S-10 EV. Oh, wait, it's already been done, and quite successfully considering how well-loved the few RAV4-EVs are.

It will take years, if not decades, for the marketplace to choose a winner, which, in turn, will keep consumers from committing to an electric car.

Why do all electric vehicles have to be the same in order to be popular? The Honda Insight and Toyota Prius have pretty much opposite strategies, and yet the Prius is wildly successful and our local Honda dealer keeps sending us letters begging us to trade in our Insight because they are in high demand but Honda stopped making them.

Secondly, even though the range of an electric car can extend to 200 miles or more, that is still not enough for people to abandon internal combustion engines. Surveys have repeatedly shown that the vast majority of people drive 50 miles or less a day -- and the nascent electric car industry takes great comfort in those numbers.

Who said everyone has to give up ICE vehicles for EVs to be successful? How about if every household in the US that currently has two ICE vehicles replaced one with an EV? It seems like that would make a successful business.

But what happens when you want to take a longer drive?

How about a hybrid? See how handy it is that we don't have everyone building the same vehicle?

For an electric car to truly take hold, the country will need some kind of national electric car infrastructure -- either a place where people can stop to charge the battery (although that still means waiting hours to get a full charge) or a system in which batteries can be exchanged like propane tanks.

Gosh, how could we possibly create a national infrastructure for charging electric vehicles? We'd have to build power plants and string wires across the entire country, then put outlets on the ends of those wires. Sounds prohibitively expensive, except for the fact that we've already done it.

According to Tesla, a high current charging station could charge the Roadster's battery pack in less than an hour. So, stop for lunch, plug in your car in the parking lot, and an hour later your EV is fully charged.

Then there are the manufacturing problems. Just because Tesla has succeeded in making an expensive electric sports car does not mean that it will be able to make a moderately priced five-seat sedan. The latter is a quantum leap more difficult. "If the Roadster costs $100,000, how much will the sedan cost?" Mr. Sherman of Automotive magazine said. "It will have more doors, more seats, more metal, larger brakes. The operative word here is 'more.' "

Gosh, maybe they could lay off the carbon fiber and find some savings in economies of scale. I wonder what it cost Henry Ford to make the first 2,000 cars in inflation adjusted dollars. More than a Tesla Roadster, I'll bet.

David Cole, the chairman of the Center for Automotive Research, is another Tesla skeptic. For one thing, he says, the battery solution in the Roadster probably won't work in a heavier car. "Lithium batteries are going to change the world," he said, "but they are not ready for prime time." Tesla's solution in the Roadster -- tying together thousands of small batteries into one giant one -- is "suboptimal." He added, "On a degree of difficulty scale, building a sports car is a 2. Building a high-volume affordable car is a 10."

Ah, so he did find a big auto industry wonk that will put his name on a statement that says starting a new car company is hard. Wow! Fortunately, Tesla Motors figured this out all on its own and is working slowly toward mass-producing EVs while taking advantage of the growing demand for efficient, clean, fun electric vehicles. They sold around 1,000 before delivering a single car. What do you think the demand will be like when they are cranking them out and they are no longer an unproven car company?

Tesla, of course, insists that it is well aware of the difficulty, but remains confident it can succeed. Darryl Siry, the Tesla marketing chief, argues that the company has access to all the capital it needs, that it has just hired a manufacturing expert from Chrysler and that it has a hard-headed chief executive, named Ze'ev Drori, who has a reputation for getting things done. The more I prodded, though, the more skeptical I became.

In other words, Drori is a big auto industry guy who thinks it can be done, therefore he must be high.

For instance, what Tesla doesn't say, unless you really push, is that the sedan it hopes to sell for $60,000 will not get 200 miles per charge but closer to 160.

That's a big problem because 99% of all travel is under 100 miles, and apparently the cheapest Tesla sedan only goes an extra 60 miles of top of that.

It will cost considerably more to get 200 miles per charge -- which of course makes it an awfully costly car even for the moderately wealthy.

Yeah, cars that cost over $60,000 don't sell at all. Well, except for high-end sports sedans. Do you think Tesla can sell 20,000 high-end electric sport sedans? I sure do. 6-year-old RAV4-EVs sell for over $60,000 on the rare occasion when a lucky owner of one decides to sell. (The linked eBay item #230254014549 shows a RAV4-EV auction which closed at $89,200 but the top bidder flaked so it sold to another bidder for $69,850.) Could Tesla sell a million sedans at that price? Probably not. Given that they are only going to make 20,000 a year, it seems highly likely to me they could sell them at $60K even if they can get the cost down well below that.

I also don't see any problem with Tesla's plan to sell 200,000 EVs per year at less than $30,000 each. The only problem I can see with that is the length of the waiting list. They might need to sell them for more so their supply can meet the demand.

And that kind of petty dissembling on Tesla's part doesn't exactly inspire confidence.

Tesla said the sedan starts at $60,000, but they have never said the cheapest model will have a 200-mile range. In fact, they have not announced the specs for the sedan at all. It is somewhere between naive and disingenuous to connect the dots incorrectly and call Tesla liars.

So where should we pin our short-term electric car hopes? Andrew Grove, the former chief executive of Intel, has lately been pounding the table on behalf of something called a plug-in hybrid -- which uses a far more energy efficient design than the Prius, Toyota's popular hybrid. The Prius is powered both by batteries and an internal combustion engine, but essentially they are both working at the same time, so it is always consuming gas.

Well, except for the fact that a Prius has a small range that it can drive on pure electric. It's a small matter of installing and flipping a switch to give the US version of the Prius an extended pure electric range like the model sold in Japan. Then, for under $10,000 you can increase that range to over 40 miles.

A plug-in hybrid would drive completely on electricity until the battery runs down -- after about 40 miles or so -- and only then would the car switch to internal combustion.

A plug-in hybrid can go either way. It can have the design of a Prius (a parallel hybrid) with a larger battery, or it can be a serial hybrid like the Aptera or Chevy Volt.

Such a solution has the potential to cut the nation's gasoline bill in half.

That sounds a lot like what replacing half of the ICE cars with EVs, except with the hybrid strategy, everyone gets to keep paying for maintaining their internal combustion engines, catalytic converters and mufflers. I wonder why the big auto companies are doing everything possible to stall the adoption of pure EVs?

Mr. Grove believes that big cars like S.U.V.'s can be retrofitted to become plug-in hybrids, and he's right. But it is also expensive; Martin G. Klein, the founder of the battery company Electro Energy told me that it costs $50,000 to turn a Prius into a plug-in hybrid. (He's done it.) "But in a future scenario," he added, "it would cost a few thousand dollars."

So, it's wildly expensive, except that it isn't. In fact, companies like HyMotion are doing it today for about $10,000.

So where should we look, realistically, for a mass-market electric vehicle? Believe it or not, Detroit. In fact, the quick-fix approach that strikes me as the most promising comes from -- surprise! -- General Motors, the chief villain of "Who Killed the Electric Car?" The Chevy Volt, which the company wants to bring to market in 2010, is a plug-in hybrid that aspires to be able to travel 40 miles before switching to gasoline power. But the best part is that the combustion engine will automatically recharge the battery -- so it can switch back even while you're driving.

Yes, that's right: we should look to Detroit to do what small companies are doing today, while also not actually producing pure electric vehicles and protecting their ICE maintenance revenue stream. It's amazing how unattractive EVs look when you can just keep doing the same old thing, with a twist. They want to create a more efficient ICE vehicle by burdening a perfectly good EV with the weight and hassle of the ICE engines they have built their business around. Go Detroit!

It's not sexy like the Tesla, and it's not aerodynamic like the Aptera Typ-1. But for a mass-market solution in the here and now, that's the one to root for.

Except for the part where it's neither here nor now, it's set to match Tesla's Model S time frame, and it isn't an electric vehicle. But other than those things, it's great. So, let's all kneel and bow toward Detroit and hope that we can get in our reservations for Tesla's Model S and the 2012 sedan before they are sold out as far as the Roadster is.

The Tesla White Star is not a Hybrid

Yesterday, Tesla Motors delivered their first production Roadster to their first customer: Elon Musk, chairman of Tesla's board. It has the "beta" transmission, and production will trickle out vehicles through the first half of 2008 until they have the final transmission design finished and tested.

There was a minor event marking the delivery of "P1" to Tesla headquarters, and a few members of the press were invited. According to several reports online, Elon Musk and Ze'ev Drori gave an interview and mentioned that the White Star would offer a range-extended model as well as the pure electric.

Even though this has been know for a while, this news has picked up traction and some are saying that Tesla has sold out their vision of producing pure electrics and switched to making hybrids like everyone else is doing.

This is totally wrong. To explain, I should first explain what's good about a pure electric vehicle, what's bad about hybrids and how what Tesla is doing is better than a hybrid.

Electric Vehicles

Briefly, here are the advantages of driving a pure electric vehicle:

  • Much lower well-to-road carbon and other pollutant emissions.
  • Zero emissions when powered from renewable sources.
  • Greatly reduced maintenance.
  • No more trips to the gas station.
  • Quiet.
  • Electric is the ultimate flex fuel.
  • No added energy infrastructure required.
The biggest downsides are cost and charge time/range.

The auto industry has been mass-producing cars for a hundred years, so they have figured out how to mass produce them cheaply, or more correctly they define what people expect to pay for cars. As electric vehicles become mainstream, their costs will come down. Battery technology is currently a barrier to reducing cost, but there is lots of working going on in that area, with many avenues for significant improvement.

We have all been trained by the oil company propaganda machine to worry about the range of electric vehicles, even though most of the day-to-day driving needs for the vast majority of drivers would be met by the 100 mile range of the GM EV1 that was produced in the late 1990's.

But range isn't really the issue. Do you ever hear a car ad that brags about, or even mentions, a car's range? The range of a gas car is of minor importance because it's quick to refill a gas tank. With electric vehicles, the charge time can be much longer. But it doesn't have to be. In fact, charge time can be a huge advantage over a gas vehicle.

Consider the Tesla Roadster. It has a range of between 160 miles (worst case, driving like a maniac on the freeway) and 270 miles (mellow city driving). That's more than enough for almost anyone's daily driving. When you get home, it's just like your cell phone: you plug it in and it's fully charged long before you're awake the next morning. (It takes under five hours to charge a completely discharged Roadster with an appropriate electrical connection, significanly less if your daily commute is under 200 miles.)

Plugging in your car at night is a huge time savings compared to making the weekly trek to the gas station, and far less expensive (about 2 cents per mile).

Charge time does become an issue if you want to drive more than 200 miles in one day. The good news is that the limit to the charge rate isn't the design of the car, it's the capacity of the outlet. It's possible to charge a Tesla Roadster battery pack in about an hour if you have access to enough current. It's not practical to put such a large circuit in your home, but it would be practical to install several in parking lots at restaurants, malls, etc. So, drive your 200 miles, stop and put a couple of bucks into a charging station and your Roadster is all ready to go after you've eaten a leisurely lunch.

Once electric vehicles reach critical mass, gas cars will seem stupid by comparison. Why would anyone choose to drive a horrible pollution factory which has to be frequently maintained and manually filled with a carcinogenic and highly flammable fuel at enormous cost, most of which is sent overseas to support totalitarian govenrments?

Hybrid Vehicles

Hybrid vehicles seem like a great compromise, half way between a gas guzzler and an electric vehicle. They can in fact offer better fuel economy for smaller vehicles, but they throw out every other advantage of an electric vehicle. They still have all of the stuff from a gas vehicle that requires frequent maintenance: oil changes, muffler, catalytic converter, spark plugs, fuel filters, etc. You still have to go to the gas station periodically, and you're still running an inefficient gas engine.

But it's worse than that. In a hybrid, you punish the engine by adding the extra mass of a battery pack, reducing fuel economy and power. You also burden the battery pack with the weight of an engine and gas tank. This isn't the best of both worlds, it's the worst of both: very limited pure electric range from the battery, and poor acceleration from the gas engine.

The best of the hybrids, like the Toyota Prius and the discontinued Honda Insight, deliver great gas mileage and make for a significant improvement over the typical gas guzzler. Other hybrids are a complete fraud, offering very little in the way of improved gas mileage, instead they claim improved acceleration from the electric boost.

My wife and I do the vast majority of our driving in a Honda Insight. We've been driving one since the summer of 2001 and really like the car. But do we get the great fuel economy from the electric hybrid, or from the small aerodynamic design? I can't help but wonder if we could get better mileage from a truly optimized pure gas vehicle. I know we can do better from a pure electric.

Even through we love our Insight, hybrids are a horrible compromise. They seem like a desperate attempt by the auto companies to hold on to the revenue stream that comes from the ludicrous amount of maintenance required by a gas powered vehicle, while pandering to a growing concern for reducing environmental impact.

Range Extended Electric Vehicles

There's a variation on the hybrid design that makes a lot more sense: take a pure electric vehicle and add a small efficient gas-powered generator that can extend the range of the vehicle for long trips.

The gas engine only needs to run when you are taking a long trip, so most of the time it doesn't need to run at all. It's a small engine, and not hooked into the drive train, so the extra weight is greatly reduced compared to a traditional hybrid. Also, the engine doesn't have to run wide range of RPM and torque combinations needed for a drive train, instead it can run in its most efficient mode getting maximum power out of the gas it burns.

You still have a lot of the gas-engine maintenance issues to deal with, but you do get all of the other advantages of a pure electric, plus you can drive farther between charges for those long road trips. This could open the door to a lot of people owning a vehicle that allows them to drive nearly all of their miles in pure electric mode, without having to keep a gas guzzler in the garage for longer trips.

Tesla's White Star

Tesla's next model after the $98,000 two-seat Roadster will be the much more practical White Star, a four-door, five-passenger sport sedan that will range in cost from $50,000 to $70,000. Tesla will offer the White Star in two models: pure electric and range-extended electric. By offering these two options, far more people will be able to consider owning a vehicle that can be driven pure electric for the vast majority of their driving needs.

Look for details on the White Star to be announced in the second quarter of this year, at which point we should also get its real name. (White Star is just the code name, the Roadster was originally code-named Dark Star.)

The White Star will be followed a few years later by a higher-volume lower-cost economy vehicle, code-named Blue Star. It takes time to start a whole new auto industry, and Tesla is leading they way. I hope they succeed and inspire a great deal of competition from other car makers, either today's big auto makers or the crop of startups that will displace today's giants from the market if they don't adapt to the changing world economy and global environment.
1

Find recent content on the main index or look in the archives to find all content.